MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvcnvrelem2 Structured version   Visualization version   GIF version

Theorem dvcnvrelem2 23585
Description: Lemma for dvcnvre 23586. (Contributed by Mario Carneiro, 19-Feb-2015.) (Revised by Mario Carneiro, 8-Sep-2015.)
Hypotheses
Ref Expression
dvcnvre.f (𝜑𝐹 ∈ (𝑋cn→ℝ))
dvcnvre.d (𝜑 → dom (ℝ D 𝐹) = 𝑋)
dvcnvre.z (𝜑 → ¬ 0 ∈ ran (ℝ D 𝐹))
dvcnvre.1 (𝜑𝐹:𝑋1-1-onto𝑌)
dvcnvre.c (𝜑𝐶𝑋)
dvcnvre.r (𝜑𝑅 ∈ ℝ+)
dvcnvre.s (𝜑 → ((𝐶𝑅)[,](𝐶 + 𝑅)) ⊆ 𝑋)
dvcnvre.t 𝑇 = (topGen‘ran (,))
dvcnvre.j 𝐽 = (TopOpen‘ℂfld)
dvcnvre.m 𝑀 = (𝐽t 𝑋)
dvcnvre.n 𝑁 = (𝐽t 𝑌)
Assertion
Ref Expression
dvcnvrelem2 (𝜑 → ((𝐹𝐶) ∈ ((int‘𝑇)‘𝑌) ∧ 𝐹 ∈ ((𝑁 CnP 𝑀)‘(𝐹𝐶))))

Proof of Theorem dvcnvrelem2
StepHypRef Expression
1 dvcnvre.t . . . . . 6 𝑇 = (topGen‘ran (,))
2 retop 22375 . . . . . 6 (topGen‘ran (,)) ∈ Top
31, 2eqeltri 2684 . . . . 5 𝑇 ∈ Top
43a1i 11 . . . 4 (𝜑𝑇 ∈ Top)
5 dvcnvre.1 . . . . . 6 (𝜑𝐹:𝑋1-1-onto𝑌)
6 f1ofo 6057 . . . . . 6 (𝐹:𝑋1-1-onto𝑌𝐹:𝑋onto𝑌)
7 forn 6031 . . . . . 6 (𝐹:𝑋onto𝑌 → ran 𝐹 = 𝑌)
85, 6, 73syl 18 . . . . 5 (𝜑 → ran 𝐹 = 𝑌)
9 dvcnvre.f . . . . . 6 (𝜑𝐹 ∈ (𝑋cn→ℝ))
10 cncff 22504 . . . . . 6 (𝐹 ∈ (𝑋cn→ℝ) → 𝐹:𝑋⟶ℝ)
11 frn 5966 . . . . . 6 (𝐹:𝑋⟶ℝ → ran 𝐹 ⊆ ℝ)
129, 10, 113syl 18 . . . . 5 (𝜑 → ran 𝐹 ⊆ ℝ)
138, 12eqsstr3d 3603 . . . 4 (𝜑𝑌 ⊆ ℝ)
14 imassrn 5396 . . . . 5 (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ⊆ ran 𝐹
1514, 8syl5sseq 3616 . . . 4 (𝜑 → (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ⊆ 𝑌)
16 uniretop 22376 . . . . . 6 ℝ = (topGen‘ran (,))
171unieqi 4381 . . . . . 6 𝑇 = (topGen‘ran (,))
1816, 17eqtr4i 2635 . . . . 5 ℝ = 𝑇
1918ntrss 20669 . . . 4 ((𝑇 ∈ Top ∧ 𝑌 ⊆ ℝ ∧ (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ⊆ 𝑌) → ((int‘𝑇)‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ⊆ ((int‘𝑇)‘𝑌))
204, 13, 15, 19syl3anc 1318 . . 3 (𝜑 → ((int‘𝑇)‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ⊆ ((int‘𝑇)‘𝑌))
21 dvcnvre.d . . . . 5 (𝜑 → dom (ℝ D 𝐹) = 𝑋)
22 dvcnvre.z . . . . 5 (𝜑 → ¬ 0 ∈ ran (ℝ D 𝐹))
23 dvcnvre.c . . . . 5 (𝜑𝐶𝑋)
24 dvcnvre.r . . . . 5 (𝜑𝑅 ∈ ℝ+)
25 dvcnvre.s . . . . 5 (𝜑 → ((𝐶𝑅)[,](𝐶 + 𝑅)) ⊆ 𝑋)
269, 21, 22, 5, 23, 24, 25dvcnvrelem1 23584 . . . 4 (𝜑 → (𝐹𝐶) ∈ ((int‘(topGen‘ran (,)))‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
271fveq2i 6106 . . . . 5 (int‘𝑇) = (int‘(topGen‘ran (,)))
2827fveq1i 6104 . . . 4 ((int‘𝑇)‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) = ((int‘(topGen‘ran (,)))‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))))
2926, 28syl6eleqr 2699 . . 3 (𝜑 → (𝐹𝐶) ∈ ((int‘𝑇)‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
3020, 29sseldd 3569 . 2 (𝜑 → (𝐹𝐶) ∈ ((int‘𝑇)‘𝑌))
31 f1ocnv 6062 . . . . . . 7 (𝐹:𝑋1-1-onto𝑌𝐹:𝑌1-1-onto𝑋)
32 f1of 6050 . . . . . . 7 (𝐹:𝑌1-1-onto𝑋𝐹:𝑌𝑋)
335, 31, 323syl 18 . . . . . 6 (𝜑𝐹:𝑌𝑋)
34 ffun 5961 . . . . . 6 (𝐹:𝑌𝑋 → Fun 𝐹)
35 funcnvres 5881 . . . . . 6 (Fun 𝐹(𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝐹 ↾ (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
3633, 34, 353syl 18 . . . . 5 (𝜑(𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝐹 ↾ (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
37 dvbsss 23472 . . . . . . . . . . 11 dom (ℝ D 𝐹) ⊆ ℝ
3821, 37syl6eqssr 3619 . . . . . . . . . 10 (𝜑𝑋 ⊆ ℝ)
39 ax-resscn 9872 . . . . . . . . . 10 ℝ ⊆ ℂ
4038, 39syl6ss 3580 . . . . . . . . 9 (𝜑𝑋 ⊆ ℂ)
41 cncfss 22510 . . . . . . . . 9 ((((𝐶𝑅)[,](𝐶 + 𝑅)) ⊆ 𝑋𝑋 ⊆ ℂ) → ((𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))–cn→((𝐶𝑅)[,](𝐶 + 𝑅))) ⊆ ((𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))–cn𝑋))
4225, 40, 41syl2anc 691 . . . . . . . 8 (𝜑 → ((𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))–cn→((𝐶𝑅)[,](𝐶 + 𝑅))) ⊆ ((𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))–cn𝑋))
43 f1of1 6049 . . . . . . . . . . 11 (𝐹:𝑋1-1-onto𝑌𝐹:𝑋1-1𝑌)
445, 43syl 17 . . . . . . . . . 10 (𝜑𝐹:𝑋1-1𝑌)
45 f1ores 6064 . . . . . . . . . 10 ((𝐹:𝑋1-1𝑌 ∧ ((𝐶𝑅)[,](𝐶 + 𝑅)) ⊆ 𝑋) → (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))):((𝐶𝑅)[,](𝐶 + 𝑅))–1-1-onto→(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))))
4644, 25, 45syl2anc 691 . . . . . . . . 9 (𝜑 → (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))):((𝐶𝑅)[,](𝐶 + 𝑅))–1-1-onto→(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))))
47 dvcnvre.j . . . . . . . . . . . . . . 15 𝐽 = (TopOpen‘ℂfld)
4847tgioo2 22414 . . . . . . . . . . . . . 14 (topGen‘ran (,)) = (𝐽t ℝ)
491, 48eqtri 2632 . . . . . . . . . . . . 13 𝑇 = (𝐽t ℝ)
5049oveq1i 6559 . . . . . . . . . . . 12 (𝑇t ((𝐶𝑅)[,](𝐶 + 𝑅))) = ((𝐽t ℝ) ↾t ((𝐶𝑅)[,](𝐶 + 𝑅)))
5147cnfldtop 22397 . . . . . . . . . . . . . 14 𝐽 ∈ Top
5251a1i 11 . . . . . . . . . . . . 13 (𝜑𝐽 ∈ Top)
5325, 38sstrd 3578 . . . . . . . . . . . . 13 (𝜑 → ((𝐶𝑅)[,](𝐶 + 𝑅)) ⊆ ℝ)
54 reex 9906 . . . . . . . . . . . . . 14 ℝ ∈ V
5554a1i 11 . . . . . . . . . . . . 13 (𝜑 → ℝ ∈ V)
56 restabs 20779 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ ((𝐶𝑅)[,](𝐶 + 𝑅)) ⊆ ℝ ∧ ℝ ∈ V) → ((𝐽t ℝ) ↾t ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝐽t ((𝐶𝑅)[,](𝐶 + 𝑅))))
5752, 53, 55, 56syl3anc 1318 . . . . . . . . . . . 12 (𝜑 → ((𝐽t ℝ) ↾t ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝐽t ((𝐶𝑅)[,](𝐶 + 𝑅))))
5850, 57syl5eq 2656 . . . . . . . . . . 11 (𝜑 → (𝑇t ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝐽t ((𝐶𝑅)[,](𝐶 + 𝑅))))
5938, 23sseldd 3569 . . . . . . . . . . . . 13 (𝜑𝐶 ∈ ℝ)
6024rpred 11748 . . . . . . . . . . . . 13 (𝜑𝑅 ∈ ℝ)
6159, 60resubcld 10337 . . . . . . . . . . . 12 (𝜑 → (𝐶𝑅) ∈ ℝ)
6259, 60readdcld 9948 . . . . . . . . . . . 12 (𝜑 → (𝐶 + 𝑅) ∈ ℝ)
63 eqid 2610 . . . . . . . . . . . . 13 (𝑇t ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑇t ((𝐶𝑅)[,](𝐶 + 𝑅)))
641, 63icccmp 22436 . . . . . . . . . . . 12 (((𝐶𝑅) ∈ ℝ ∧ (𝐶 + 𝑅) ∈ ℝ) → (𝑇t ((𝐶𝑅)[,](𝐶 + 𝑅))) ∈ Comp)
6561, 62, 64syl2anc 691 . . . . . . . . . . 11 (𝜑 → (𝑇t ((𝐶𝑅)[,](𝐶 + 𝑅))) ∈ Comp)
6658, 65eqeltrrd 2689 . . . . . . . . . 10 (𝜑 → (𝐽t ((𝐶𝑅)[,](𝐶 + 𝑅))) ∈ Comp)
67 f1of 6050 . . . . . . . . . . . 12 ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))):((𝐶𝑅)[,](𝐶 + 𝑅))–1-1-onto→(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) → (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))):((𝐶𝑅)[,](𝐶 + 𝑅))⟶(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))))
6846, 67syl 17 . . . . . . . . . . 11 (𝜑 → (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))):((𝐶𝑅)[,](𝐶 + 𝑅))⟶(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))))
6912, 39syl6ss 3580 . . . . . . . . . . . . 13 (𝜑 → ran 𝐹 ⊆ ℂ)
7014, 69syl5ss 3579 . . . . . . . . . . . 12 (𝜑 → (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ⊆ ℂ)
71 rescncf 22508 . . . . . . . . . . . . 13 (((𝐶𝑅)[,](𝐶 + 𝑅)) ⊆ 𝑋 → (𝐹 ∈ (𝑋cn→ℝ) → (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∈ (((𝐶𝑅)[,](𝐶 + 𝑅))–cn→ℝ)))
7225, 9, 71sylc 63 . . . . . . . . . . . 12 (𝜑 → (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∈ (((𝐶𝑅)[,](𝐶 + 𝑅))–cn→ℝ))
73 cncffvrn 22509 . . . . . . . . . . . 12 (((𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ⊆ ℂ ∧ (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∈ (((𝐶𝑅)[,](𝐶 + 𝑅))–cn→ℝ)) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∈ (((𝐶𝑅)[,](𝐶 + 𝑅))–cn→(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ↔ (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))):((𝐶𝑅)[,](𝐶 + 𝑅))⟶(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
7470, 72, 73syl2anc 691 . . . . . . . . . . 11 (𝜑 → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∈ (((𝐶𝑅)[,](𝐶 + 𝑅))–cn→(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ↔ (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))):((𝐶𝑅)[,](𝐶 + 𝑅))⟶(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
7568, 74mpbird 246 . . . . . . . . . 10 (𝜑 → (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∈ (((𝐶𝑅)[,](𝐶 + 𝑅))–cn→(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
76 eqid 2610 . . . . . . . . . . 11 (𝐽t ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝐽t ((𝐶𝑅)[,](𝐶 + 𝑅)))
7747, 76cncfcnvcn 22532 . . . . . . . . . 10 (((𝐽t ((𝐶𝑅)[,](𝐶 + 𝑅))) ∈ Comp ∧ (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∈ (((𝐶𝑅)[,](𝐶 + 𝑅))–cn→(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))):((𝐶𝑅)[,](𝐶 + 𝑅))–1-1-onto→(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ↔ (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∈ ((𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))–cn→((𝐶𝑅)[,](𝐶 + 𝑅)))))
7866, 75, 77syl2anc 691 . . . . . . . . 9 (𝜑 → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))):((𝐶𝑅)[,](𝐶 + 𝑅))–1-1-onto→(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ↔ (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∈ ((𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))–cn→((𝐶𝑅)[,](𝐶 + 𝑅)))))
7946, 78mpbid 221 . . . . . . . 8 (𝜑(𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∈ ((𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))–cn→((𝐶𝑅)[,](𝐶 + 𝑅))))
8042, 79sseldd 3569 . . . . . . 7 (𝜑(𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∈ ((𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))–cn𝑋))
81 eqid 2610 . . . . . . . . 9 (𝐽t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) = (𝐽t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))))
82 dvcnvre.m . . . . . . . . 9 𝑀 = (𝐽t 𝑋)
8347, 81, 82cncfcn 22520 . . . . . . . 8 (((𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ⊆ ℂ ∧ 𝑋 ⊆ ℂ) → ((𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))–cn𝑋) = ((𝐽t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) Cn 𝑀))
8470, 40, 83syl2anc 691 . . . . . . 7 (𝜑 → ((𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))–cn𝑋) = ((𝐽t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) Cn 𝑀))
8580, 84eleqtrd 2690 . . . . . 6 (𝜑(𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∈ ((𝐽t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) Cn 𝑀))
8659, 24ltsubrpd 11780 . . . . . . . . . 10 (𝜑 → (𝐶𝑅) < 𝐶)
8761, 59, 86ltled 10064 . . . . . . . . 9 (𝜑 → (𝐶𝑅) ≤ 𝐶)
8859, 24ltaddrpd 11781 . . . . . . . . . 10 (𝜑𝐶 < (𝐶 + 𝑅))
8959, 62, 88ltled 10064 . . . . . . . . 9 (𝜑𝐶 ≤ (𝐶 + 𝑅))
90 elicc2 12109 . . . . . . . . . 10 (((𝐶𝑅) ∈ ℝ ∧ (𝐶 + 𝑅) ∈ ℝ) → (𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) ↔ (𝐶 ∈ ℝ ∧ (𝐶𝑅) ≤ 𝐶𝐶 ≤ (𝐶 + 𝑅))))
9161, 62, 90syl2anc 691 . . . . . . . . 9 (𝜑 → (𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) ↔ (𝐶 ∈ ℝ ∧ (𝐶𝑅) ≤ 𝐶𝐶 ≤ (𝐶 + 𝑅))))
9259, 87, 89, 91mpbir3and 1238 . . . . . . . 8 (𝜑𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)))
93 ffun 5961 . . . . . . . . . 10 (𝐹:𝑋⟶ℝ → Fun 𝐹)
949, 10, 933syl 18 . . . . . . . . 9 (𝜑 → Fun 𝐹)
95 fdm 5964 . . . . . . . . . . 11 (𝐹:𝑋⟶ℝ → dom 𝐹 = 𝑋)
969, 10, 953syl 18 . . . . . . . . . 10 (𝜑 → dom 𝐹 = 𝑋)
9725, 96sseqtr4d 3605 . . . . . . . . 9 (𝜑 → ((𝐶𝑅)[,](𝐶 + 𝑅)) ⊆ dom 𝐹)
98 funfvima2 6397 . . . . . . . . 9 ((Fun 𝐹 ∧ ((𝐶𝑅)[,](𝐶 + 𝑅)) ⊆ dom 𝐹) → (𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) → (𝐹𝐶) ∈ (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
9994, 97, 98syl2anc 691 . . . . . . . 8 (𝜑 → (𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) → (𝐹𝐶) ∈ (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
10092, 99mpd 15 . . . . . . 7 (𝜑 → (𝐹𝐶) ∈ (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))))
10147cnfldtopon 22396 . . . . . . . . 9 𝐽 ∈ (TopOn‘ℂ)
102 resttopon 20775 . . . . . . . . 9 ((𝐽 ∈ (TopOn‘ℂ) ∧ (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ⊆ ℂ) → (𝐽t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ∈ (TopOn‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
103101, 70, 102sylancr 694 . . . . . . . 8 (𝜑 → (𝐽t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ∈ (TopOn‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
104 toponuni 20542 . . . . . . . 8 ((𝐽t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ∈ (TopOn‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝐽t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
105103, 104syl 17 . . . . . . 7 (𝜑 → (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝐽t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
106100, 105eleqtrd 2690 . . . . . 6 (𝜑 → (𝐹𝐶) ∈ (𝐽t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
107 eqid 2610 . . . . . . 7 (𝐽t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) = (𝐽t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))))
108107cncnpi 20892 . . . . . 6 (((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∈ ((𝐽t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) Cn 𝑀) ∧ (𝐹𝐶) ∈ (𝐽t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))))) → (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∈ (((𝐽t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) CnP 𝑀)‘(𝐹𝐶)))
10985, 106, 108syl2anc 691 . . . . 5 (𝜑(𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∈ (((𝐽t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) CnP 𝑀)‘(𝐹𝐶)))
11036, 109eqeltrrd 2689 . . . 4 (𝜑 → (𝐹 ↾ (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ∈ (((𝐽t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) CnP 𝑀)‘(𝐹𝐶)))
111 dvcnvre.n . . . . . . . 8 𝑁 = (𝐽t 𝑌)
112111oveq1i 6559 . . . . . . 7 (𝑁t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) = ((𝐽t 𝑌) ↾t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))))
113 ssexg 4732 . . . . . . . . 9 ((𝑌 ⊆ ℝ ∧ ℝ ∈ V) → 𝑌 ∈ V)
11413, 54, 113sylancl 693 . . . . . . . 8 (𝜑𝑌 ∈ V)
115 restabs 20779 . . . . . . . 8 ((𝐽 ∈ Top ∧ (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ⊆ 𝑌𝑌 ∈ V) → ((𝐽t 𝑌) ↾t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) = (𝐽t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
11652, 15, 114, 115syl3anc 1318 . . . . . . 7 (𝜑 → ((𝐽t 𝑌) ↾t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) = (𝐽t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
117112, 116syl5eq 2656 . . . . . 6 (𝜑 → (𝑁t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) = (𝐽t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
118117oveq1d 6564 . . . . 5 (𝜑 → ((𝑁t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) CnP 𝑀) = ((𝐽t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) CnP 𝑀))
119118fveq1d 6105 . . . 4 (𝜑 → (((𝑁t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) CnP 𝑀)‘(𝐹𝐶)) = (((𝐽t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) CnP 𝑀)‘(𝐹𝐶)))
120110, 119eleqtrrd 2691 . . 3 (𝜑 → (𝐹 ↾ (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ∈ (((𝑁t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) CnP 𝑀)‘(𝐹𝐶)))
12113, 39syl6ss 3580 . . . . . . 7 (𝜑𝑌 ⊆ ℂ)
122 resttopon 20775 . . . . . . 7 ((𝐽 ∈ (TopOn‘ℂ) ∧ 𝑌 ⊆ ℂ) → (𝐽t 𝑌) ∈ (TopOn‘𝑌))
123101, 121, 122sylancr 694 . . . . . 6 (𝜑 → (𝐽t 𝑌) ∈ (TopOn‘𝑌))
124111, 123syl5eqel 2692 . . . . 5 (𝜑𝑁 ∈ (TopOn‘𝑌))
125 topontop 20541 . . . . 5 (𝑁 ∈ (TopOn‘𝑌) → 𝑁 ∈ Top)
126124, 125syl 17 . . . 4 (𝜑𝑁 ∈ Top)
127 toponuni 20542 . . . . . 6 (𝑁 ∈ (TopOn‘𝑌) → 𝑌 = 𝑁)
128124, 127syl 17 . . . . 5 (𝜑𝑌 = 𝑁)
12915, 128sseqtrd 3604 . . . 4 (𝜑 → (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ⊆ 𝑁)
13015, 13sstrd 3578 . . . . . . . . 9 (𝜑 → (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ⊆ ℝ)
131 difssd 3700 . . . . . . . . 9 (𝜑 → (ℝ ∖ 𝑌) ⊆ ℝ)
132130, 131unssd 3751 . . . . . . . 8 (𝜑 → ((𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∪ (ℝ ∖ 𝑌)) ⊆ ℝ)
133 ssun1 3738 . . . . . . . . 9 (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ⊆ ((𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∪ (ℝ ∖ 𝑌))
134133a1i 11 . . . . . . . 8 (𝜑 → (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ⊆ ((𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∪ (ℝ ∖ 𝑌)))
13518ntrss 20669 . . . . . . . 8 ((𝑇 ∈ Top ∧ ((𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∪ (ℝ ∖ 𝑌)) ⊆ ℝ ∧ (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ⊆ ((𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∪ (ℝ ∖ 𝑌))) → ((int‘𝑇)‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ⊆ ((int‘𝑇)‘((𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∪ (ℝ ∖ 𝑌))))
1364, 132, 134, 135syl3anc 1318 . . . . . . 7 (𝜑 → ((int‘𝑇)‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ⊆ ((int‘𝑇)‘((𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∪ (ℝ ∖ 𝑌))))
137136, 29sseldd 3569 . . . . . 6 (𝜑 → (𝐹𝐶) ∈ ((int‘𝑇)‘((𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∪ (ℝ ∖ 𝑌))))
138 f1of 6050 . . . . . . . 8 (𝐹:𝑋1-1-onto𝑌𝐹:𝑋𝑌)
1395, 138syl 17 . . . . . . 7 (𝜑𝐹:𝑋𝑌)
140139, 23ffvelrnd 6268 . . . . . 6 (𝜑 → (𝐹𝐶) ∈ 𝑌)
141137, 140elind 3760 . . . . 5 (𝜑 → (𝐹𝐶) ∈ (((int‘𝑇)‘((𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∪ (ℝ ∖ 𝑌))) ∩ 𝑌))
142 eqid 2610 . . . . . . . 8 (𝑇t 𝑌) = (𝑇t 𝑌)
14318, 142restntr 20796 . . . . . . 7 ((𝑇 ∈ Top ∧ 𝑌 ⊆ ℝ ∧ (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ⊆ 𝑌) → ((int‘(𝑇t 𝑌))‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) = (((int‘𝑇)‘((𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∪ (ℝ ∖ 𝑌))) ∩ 𝑌))
1444, 13, 15, 143syl3anc 1318 . . . . . 6 (𝜑 → ((int‘(𝑇t 𝑌))‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) = (((int‘𝑇)‘((𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∪ (ℝ ∖ 𝑌))) ∩ 𝑌))
145 restabs 20779 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝑌 ⊆ ℝ ∧ ℝ ∈ V) → ((𝐽t ℝ) ↾t 𝑌) = (𝐽t 𝑌))
14652, 13, 55, 145syl3anc 1318 . . . . . . . . 9 (𝜑 → ((𝐽t ℝ) ↾t 𝑌) = (𝐽t 𝑌))
14749oveq1i 6559 . . . . . . . . 9 (𝑇t 𝑌) = ((𝐽t ℝ) ↾t 𝑌)
148146, 147, 1113eqtr4g 2669 . . . . . . . 8 (𝜑 → (𝑇t 𝑌) = 𝑁)
149148fveq2d 6107 . . . . . . 7 (𝜑 → (int‘(𝑇t 𝑌)) = (int‘𝑁))
150149fveq1d 6105 . . . . . 6 (𝜑 → ((int‘(𝑇t 𝑌))‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) = ((int‘𝑁)‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
151144, 150eqtr3d 2646 . . . . 5 (𝜑 → (((int‘𝑇)‘((𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∪ (ℝ ∖ 𝑌))) ∩ 𝑌) = ((int‘𝑁)‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
152141, 151eleqtrd 2690 . . . 4 (𝜑 → (𝐹𝐶) ∈ ((int‘𝑁)‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
153128feq2d 5944 . . . . . 6 (𝜑 → (𝐹:𝑌𝑋𝐹: 𝑁𝑋))
15433, 153mpbid 221 . . . . 5 (𝜑𝐹: 𝑁𝑋)
155 resttopon 20775 . . . . . . . 8 ((𝐽 ∈ (TopOn‘ℂ) ∧ 𝑋 ⊆ ℂ) → (𝐽t 𝑋) ∈ (TopOn‘𝑋))
156101, 40, 155sylancr 694 . . . . . . 7 (𝜑 → (𝐽t 𝑋) ∈ (TopOn‘𝑋))
15782, 156syl5eqel 2692 . . . . . 6 (𝜑𝑀 ∈ (TopOn‘𝑋))
158 toponuni 20542 . . . . . 6 (𝑀 ∈ (TopOn‘𝑋) → 𝑋 = 𝑀)
159 feq3 5941 . . . . . 6 (𝑋 = 𝑀 → (𝐹: 𝑁𝑋𝐹: 𝑁 𝑀))
160157, 158, 1593syl 18 . . . . 5 (𝜑 → (𝐹: 𝑁𝑋𝐹: 𝑁 𝑀))
161154, 160mpbid 221 . . . 4 (𝜑𝐹: 𝑁 𝑀)
162 eqid 2610 . . . . 5 𝑁 = 𝑁
163 eqid 2610 . . . . 5 𝑀 = 𝑀
164162, 163cnprest 20903 . . . 4 (((𝑁 ∈ Top ∧ (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) ⊆ 𝑁) ∧ ((𝐹𝐶) ∈ ((int‘𝑁)‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ∧ 𝐹: 𝑁 𝑀)) → (𝐹 ∈ ((𝑁 CnP 𝑀)‘(𝐹𝐶)) ↔ (𝐹 ↾ (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ∈ (((𝑁t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) CnP 𝑀)‘(𝐹𝐶))))
165126, 129, 152, 161, 164syl22anc 1319 . . 3 (𝜑 → (𝐹 ∈ ((𝑁 CnP 𝑀)‘(𝐹𝐶)) ↔ (𝐹 ↾ (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ∈ (((𝑁t (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) CnP 𝑀)‘(𝐹𝐶))))
166120, 165mpbird 246 . 2 (𝜑𝐹 ∈ ((𝑁 CnP 𝑀)‘(𝐹𝐶)))
16730, 166jca 553 1 (𝜑 → ((𝐹𝐶) ∈ ((int‘𝑇)‘𝑌) ∧ 𝐹 ∈ ((𝑁 CnP 𝑀)‘(𝐹𝐶))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  Vcvv 3173  cdif 3537  cun 3538  cin 3539  wss 3540   cuni 4372   class class class wbr 4583  ccnv 5037  dom cdm 5038  ran crn 5039  cres 5040  cima 5041  Fun wfun 5798  wf 5800  1-1wf1 5801  ontowfo 5802  1-1-ontowf1o 5803  cfv 5804  (class class class)co 6549  cc 9813  cr 9814  0cc0 9815   + caddc 9818  cle 9954  cmin 10145  +crp 11708  (,)cioo 12046  [,]cicc 12049  t crest 15904  TopOpenctopn 15905  topGenctg 15921  fldccnfld 19567  Topctop 20517  TopOnctopon 20518  intcnt 20631   Cn ccn 20838   CnP ccnp 20839  Compccmp 20999  cnccncf 22487   D cdv 23433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-haus 20929  df-cmp 21000  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-limc 23436  df-dv 23437
This theorem is referenced by:  dvcnvre  23586
  Copyright terms: Public domain W3C validator