Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ioccncflimc Structured version   Visualization version   GIF version

Theorem ioccncflimc 38771
Description: Limit at the upper bound, of a continuous function defined on a left open right closed interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
ioccncflimc.a (𝜑𝐴 ∈ ℝ*)
ioccncflimc.b (𝜑𝐵 ∈ ℝ)
ioccncflimc.altb (𝜑𝐴 < 𝐵)
ioccncflimc.f (𝜑𝐹 ∈ ((𝐴(,]𝐵)–cn→ℂ))
Assertion
Ref Expression
ioccncflimc (𝜑 → (𝐹𝐵) ∈ ((𝐹 ↾ (𝐴(,)𝐵)) lim 𝐵))

Proof of Theorem ioccncflimc
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ioccncflimc.f . . 3 (𝜑𝐹 ∈ ((𝐴(,]𝐵)–cn→ℂ))
2 ioccncflimc.a . . . 4 (𝜑𝐴 ∈ ℝ*)
3 ioccncflimc.b . . . . 5 (𝜑𝐵 ∈ ℝ)
43rexrd 9968 . . . 4 (𝜑𝐵 ∈ ℝ*)
5 ioccncflimc.altb . . . 4 (𝜑𝐴 < 𝐵)
63leidd 10473 . . . 4 (𝜑𝐵𝐵)
72, 4, 4, 5, 6eliocd 38577 . . 3 (𝜑𝐵 ∈ (𝐴(,]𝐵))
81, 7cnlimci 23459 . 2 (𝜑 → (𝐹𝐵) ∈ (𝐹 lim 𝐵))
9 cncfrss 22502 . . . . . . . 8 (𝐹 ∈ ((𝐴(,]𝐵)–cn→ℂ) → (𝐴(,]𝐵) ⊆ ℂ)
101, 9syl 17 . . . . . . 7 (𝜑 → (𝐴(,]𝐵) ⊆ ℂ)
11 ssid 3587 . . . . . . 7 ℂ ⊆ ℂ
12 eqid 2610 . . . . . . . 8 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
13 eqid 2610 . . . . . . . 8 ((TopOpen‘ℂfld) ↾t (𝐴(,]𝐵)) = ((TopOpen‘ℂfld) ↾t (𝐴(,]𝐵))
14 eqid 2610 . . . . . . . 8 ((TopOpen‘ℂfld) ↾t ℂ) = ((TopOpen‘ℂfld) ↾t ℂ)
1512, 13, 14cncfcn 22520 . . . . . . 7 (((𝐴(,]𝐵) ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((𝐴(,]𝐵)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (𝐴(,]𝐵)) Cn ((TopOpen‘ℂfld) ↾t ℂ)))
1610, 11, 15sylancl 693 . . . . . 6 (𝜑 → ((𝐴(,]𝐵)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (𝐴(,]𝐵)) Cn ((TopOpen‘ℂfld) ↾t ℂ)))
171, 16eleqtrd 2690 . . . . 5 (𝜑𝐹 ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,]𝐵)) Cn ((TopOpen‘ℂfld) ↾t ℂ)))
1812cnfldtopon 22396 . . . . . . 7 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
19 resttopon 20775 . . . . . . 7 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ (𝐴(,]𝐵) ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t (𝐴(,]𝐵)) ∈ (TopOn‘(𝐴(,]𝐵)))
2018, 10, 19sylancr 694 . . . . . 6 (𝜑 → ((TopOpen‘ℂfld) ↾t (𝐴(,]𝐵)) ∈ (TopOn‘(𝐴(,]𝐵)))
2112cnfldtop 22397 . . . . . . . 8 (TopOpen‘ℂfld) ∈ Top
22 unicntop 38230 . . . . . . . . 9 ℂ = (TopOpen‘ℂfld)
2322restid 15917 . . . . . . . 8 ((TopOpen‘ℂfld) ∈ Top → ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld))
2421, 23ax-mp 5 . . . . . . 7 ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld)
2524cnfldtopon 22396 . . . . . 6 ((TopOpen‘ℂfld) ↾t ℂ) ∈ (TopOn‘ℂ)
26 cncnp 20894 . . . . . 6 ((((TopOpen‘ℂfld) ↾t (𝐴(,]𝐵)) ∈ (TopOn‘(𝐴(,]𝐵)) ∧ ((TopOpen‘ℂfld) ↾t ℂ) ∈ (TopOn‘ℂ)) → (𝐹 ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,]𝐵)) Cn ((TopOpen‘ℂfld) ↾t ℂ)) ↔ (𝐹:(𝐴(,]𝐵)⟶ℂ ∧ ∀𝑥 ∈ (𝐴(,]𝐵)𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,]𝐵)) CnP ((TopOpen‘ℂfld) ↾t ℂ))‘𝑥))))
2720, 25, 26sylancl 693 . . . . 5 (𝜑 → (𝐹 ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,]𝐵)) Cn ((TopOpen‘ℂfld) ↾t ℂ)) ↔ (𝐹:(𝐴(,]𝐵)⟶ℂ ∧ ∀𝑥 ∈ (𝐴(,]𝐵)𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,]𝐵)) CnP ((TopOpen‘ℂfld) ↾t ℂ))‘𝑥))))
2817, 27mpbid 221 . . . 4 (𝜑 → (𝐹:(𝐴(,]𝐵)⟶ℂ ∧ ∀𝑥 ∈ (𝐴(,]𝐵)𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,]𝐵)) CnP ((TopOpen‘ℂfld) ↾t ℂ))‘𝑥)))
2928simpld 474 . . 3 (𝜑𝐹:(𝐴(,]𝐵)⟶ℂ)
30 ioossioc 38560 . . . 4 (𝐴(,)𝐵) ⊆ (𝐴(,]𝐵)
3130a1i 11 . . 3 (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴(,]𝐵))
32 eqid 2610 . . 3 ((TopOpen‘ℂfld) ↾t ((𝐴(,]𝐵) ∪ {𝐵})) = ((TopOpen‘ℂfld) ↾t ((𝐴(,]𝐵) ∪ {𝐵}))
333recnd 9947 . . . . . . 7 (𝜑𝐵 ∈ ℂ)
3422ntrtop 20684 . . . . . . . . 9 ((TopOpen‘ℂfld) ∈ Top → ((int‘(TopOpen‘ℂfld))‘ℂ) = ℂ)
3521, 34ax-mp 5 . . . . . . . 8 ((int‘(TopOpen‘ℂfld))‘ℂ) = ℂ
36 undif 4001 . . . . . . . . . . 11 ((𝐴(,]𝐵) ⊆ ℂ ↔ ((𝐴(,]𝐵) ∪ (ℂ ∖ (𝐴(,]𝐵))) = ℂ)
3710, 36sylib 207 . . . . . . . . . 10 (𝜑 → ((𝐴(,]𝐵) ∪ (ℂ ∖ (𝐴(,]𝐵))) = ℂ)
3837eqcomd 2616 . . . . . . . . 9 (𝜑 → ℂ = ((𝐴(,]𝐵) ∪ (ℂ ∖ (𝐴(,]𝐵))))
3938fveq2d 6107 . . . . . . . 8 (𝜑 → ((int‘(TopOpen‘ℂfld))‘ℂ) = ((int‘(TopOpen‘ℂfld))‘((𝐴(,]𝐵) ∪ (ℂ ∖ (𝐴(,]𝐵)))))
4035, 39syl5eqr 2658 . . . . . . 7 (𝜑 → ℂ = ((int‘(TopOpen‘ℂfld))‘((𝐴(,]𝐵) ∪ (ℂ ∖ (𝐴(,]𝐵)))))
4133, 40eleqtrd 2690 . . . . . 6 (𝜑𝐵 ∈ ((int‘(TopOpen‘ℂfld))‘((𝐴(,]𝐵) ∪ (ℂ ∖ (𝐴(,]𝐵)))))
4241, 7elind 3760 . . . . 5 (𝜑𝐵 ∈ (((int‘(TopOpen‘ℂfld))‘((𝐴(,]𝐵) ∪ (ℂ ∖ (𝐴(,]𝐵)))) ∩ (𝐴(,]𝐵)))
4321a1i 11 . . . . . 6 (𝜑 → (TopOpen‘ℂfld) ∈ Top)
44 ssid 3587 . . . . . . 7 (𝐴(,]𝐵) ⊆ (𝐴(,]𝐵)
4544a1i 11 . . . . . 6 (𝜑 → (𝐴(,]𝐵) ⊆ (𝐴(,]𝐵))
4622, 13restntr 20796 . . . . . 6 (((TopOpen‘ℂfld) ∈ Top ∧ (𝐴(,]𝐵) ⊆ ℂ ∧ (𝐴(,]𝐵) ⊆ (𝐴(,]𝐵)) → ((int‘((TopOpen‘ℂfld) ↾t (𝐴(,]𝐵)))‘(𝐴(,]𝐵)) = (((int‘(TopOpen‘ℂfld))‘((𝐴(,]𝐵) ∪ (ℂ ∖ (𝐴(,]𝐵)))) ∩ (𝐴(,]𝐵)))
4743, 10, 45, 46syl3anc 1318 . . . . 5 (𝜑 → ((int‘((TopOpen‘ℂfld) ↾t (𝐴(,]𝐵)))‘(𝐴(,]𝐵)) = (((int‘(TopOpen‘ℂfld))‘((𝐴(,]𝐵) ∪ (ℂ ∖ (𝐴(,]𝐵)))) ∩ (𝐴(,]𝐵)))
4842, 47eleqtrrd 2691 . . . 4 (𝜑𝐵 ∈ ((int‘((TopOpen‘ℂfld) ↾t (𝐴(,]𝐵)))‘(𝐴(,]𝐵)))
497snssd 4281 . . . . . . . . 9 (𝜑 → {𝐵} ⊆ (𝐴(,]𝐵))
50 ssequn2 3748 . . . . . . . . 9 ({𝐵} ⊆ (𝐴(,]𝐵) ↔ ((𝐴(,]𝐵) ∪ {𝐵}) = (𝐴(,]𝐵))
5149, 50sylib 207 . . . . . . . 8 (𝜑 → ((𝐴(,]𝐵) ∪ {𝐵}) = (𝐴(,]𝐵))
5251eqcomd 2616 . . . . . . 7 (𝜑 → (𝐴(,]𝐵) = ((𝐴(,]𝐵) ∪ {𝐵}))
5352oveq2d 6565 . . . . . 6 (𝜑 → ((TopOpen‘ℂfld) ↾t (𝐴(,]𝐵)) = ((TopOpen‘ℂfld) ↾t ((𝐴(,]𝐵) ∪ {𝐵})))
5453fveq2d 6107 . . . . 5 (𝜑 → (int‘((TopOpen‘ℂfld) ↾t (𝐴(,]𝐵))) = (int‘((TopOpen‘ℂfld) ↾t ((𝐴(,]𝐵) ∪ {𝐵}))))
55 snunioo2 38578 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ((𝐴(,)𝐵) ∪ {𝐵}) = (𝐴(,]𝐵))
562, 4, 5, 55syl3anc 1318 . . . . . 6 (𝜑 → ((𝐴(,)𝐵) ∪ {𝐵}) = (𝐴(,]𝐵))
5756eqcomd 2616 . . . . 5 (𝜑 → (𝐴(,]𝐵) = ((𝐴(,)𝐵) ∪ {𝐵}))
5854, 57fveq12d 6109 . . . 4 (𝜑 → ((int‘((TopOpen‘ℂfld) ↾t (𝐴(,]𝐵)))‘(𝐴(,]𝐵)) = ((int‘((TopOpen‘ℂfld) ↾t ((𝐴(,]𝐵) ∪ {𝐵})))‘((𝐴(,)𝐵) ∪ {𝐵})))
5948, 58eleqtrd 2690 . . 3 (𝜑𝐵 ∈ ((int‘((TopOpen‘ℂfld) ↾t ((𝐴(,]𝐵) ∪ {𝐵})))‘((𝐴(,)𝐵) ∪ {𝐵})))
6029, 31, 10, 12, 32, 59limcres 23456 . 2 (𝜑 → ((𝐹 ↾ (𝐴(,)𝐵)) lim 𝐵) = (𝐹 lim 𝐵))
618, 60eleqtrrd 2691 1 (𝜑 → (𝐹𝐵) ∈ ((𝐹 ↾ (𝐴(,)𝐵)) lim 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wral 2896  cdif 3537  cun 3538  cin 3539  wss 3540  {csn 4125   class class class wbr 4583  cres 5040  wf 5800  cfv 5804  (class class class)co 6549  cc 9813  cr 9814  *cxr 9952   < clt 9953  (,)cioo 12046  (,]cioc 12047  t crest 15904  TopOpenctopn 15905  fldccnfld 19567  Topctop 20517  TopOnctopon 20518  intcnt 20631   Cn ccn 20838   CnP ccnp 20839  cnccncf 22487   lim climc 23432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fi 8200  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ioc 12051  df-icc 12053  df-fz 12198  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-plusg 15781  df-mulr 15782  df-starv 15783  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-rest 15906  df-topn 15907  df-topgen 15927  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-ntr 20634  df-cn 20841  df-cnp 20842  df-xms 21935  df-ms 21936  df-cncf 22489  df-limc 23436
This theorem is referenced by:  fourierdlem46  39045
  Copyright terms: Public domain W3C validator