Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  icocncflimc Structured version   Visualization version   GIF version

Theorem icocncflimc 38775
 Description: Limit at the lower bound, of a continuous function defined on a left closed right open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
icocncflimc.a (𝜑𝐴 ∈ ℝ)
icocncflimc.b (𝜑𝐵 ∈ ℝ*)
icocncflimc.altb (𝜑𝐴 < 𝐵)
icocncflimc.f (𝜑𝐹 ∈ ((𝐴[,)𝐵)–cn→ℂ))
Assertion
Ref Expression
icocncflimc (𝜑 → (𝐹𝐴) ∈ ((𝐹 ↾ (𝐴(,)𝐵)) lim 𝐴))

Proof of Theorem icocncflimc
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 icocncflimc.f . . 3 (𝜑𝐹 ∈ ((𝐴[,)𝐵)–cn→ℂ))
2 icocncflimc.a . . . . 5 (𝜑𝐴 ∈ ℝ)
32rexrd 9968 . . . 4 (𝜑𝐴 ∈ ℝ*)
4 icocncflimc.b . . . 4 (𝜑𝐵 ∈ ℝ*)
52leidd 10473 . . . 4 (𝜑𝐴𝐴)
6 icocncflimc.altb . . . 4 (𝜑𝐴 < 𝐵)
73, 4, 3, 5, 6elicod 12095 . . 3 (𝜑𝐴 ∈ (𝐴[,)𝐵))
81, 7cnlimci 23459 . 2 (𝜑 → (𝐹𝐴) ∈ (𝐹 lim 𝐴))
9 cncfrss 22502 . . . . . . . 8 (𝐹 ∈ ((𝐴[,)𝐵)–cn→ℂ) → (𝐴[,)𝐵) ⊆ ℂ)
101, 9syl 17 . . . . . . 7 (𝜑 → (𝐴[,)𝐵) ⊆ ℂ)
11 ssid 3587 . . . . . . 7 ℂ ⊆ ℂ
12 eqid 2610 . . . . . . . 8 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
13 eqid 2610 . . . . . . . 8 ((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵)) = ((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵))
14 eqid 2610 . . . . . . . 8 ((TopOpen‘ℂfld) ↾t ℂ) = ((TopOpen‘ℂfld) ↾t ℂ)
1512, 13, 14cncfcn 22520 . . . . . . 7 (((𝐴[,)𝐵) ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((𝐴[,)𝐵)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵)) Cn ((TopOpen‘ℂfld) ↾t ℂ)))
1610, 11, 15sylancl 693 . . . . . 6 (𝜑 → ((𝐴[,)𝐵)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵)) Cn ((TopOpen‘ℂfld) ↾t ℂ)))
171, 16eleqtrd 2690 . . . . 5 (𝜑𝐹 ∈ (((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵)) Cn ((TopOpen‘ℂfld) ↾t ℂ)))
1812cnfldtopon 22396 . . . . . . . 8 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
1918a1i 11 . . . . . . 7 (𝜑 → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
20 resttopon 20775 . . . . . . 7 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ (𝐴[,)𝐵) ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵)) ∈ (TopOn‘(𝐴[,)𝐵)))
2119, 10, 20syl2anc 691 . . . . . 6 (𝜑 → ((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵)) ∈ (TopOn‘(𝐴[,)𝐵)))
2212cnfldtop 22397 . . . . . . . 8 (TopOpen‘ℂfld) ∈ Top
23 unicntop 38230 . . . . . . . . 9 ℂ = (TopOpen‘ℂfld)
2423restid 15917 . . . . . . . 8 ((TopOpen‘ℂfld) ∈ Top → ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld))
2522, 24ax-mp 5 . . . . . . 7 ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld)
2625cnfldtopon 22396 . . . . . 6 ((TopOpen‘ℂfld) ↾t ℂ) ∈ (TopOn‘ℂ)
27 cncnp 20894 . . . . . 6 ((((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵)) ∈ (TopOn‘(𝐴[,)𝐵)) ∧ ((TopOpen‘ℂfld) ↾t ℂ) ∈ (TopOn‘ℂ)) → (𝐹 ∈ (((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵)) Cn ((TopOpen‘ℂfld) ↾t ℂ)) ↔ (𝐹:(𝐴[,)𝐵)⟶ℂ ∧ ∀𝑥 ∈ (𝐴[,)𝐵)𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵)) CnP ((TopOpen‘ℂfld) ↾t ℂ))‘𝑥))))
2821, 26, 27sylancl 693 . . . . 5 (𝜑 → (𝐹 ∈ (((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵)) Cn ((TopOpen‘ℂfld) ↾t ℂ)) ↔ (𝐹:(𝐴[,)𝐵)⟶ℂ ∧ ∀𝑥 ∈ (𝐴[,)𝐵)𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵)) CnP ((TopOpen‘ℂfld) ↾t ℂ))‘𝑥))))
2917, 28mpbid 221 . . . 4 (𝜑 → (𝐹:(𝐴[,)𝐵)⟶ℂ ∧ ∀𝑥 ∈ (𝐴[,)𝐵)𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵)) CnP ((TopOpen‘ℂfld) ↾t ℂ))‘𝑥)))
3029simpld 474 . . 3 (𝜑𝐹:(𝐴[,)𝐵)⟶ℂ)
31 ioossico 12133 . . . 4 (𝐴(,)𝐵) ⊆ (𝐴[,)𝐵)
3231a1i 11 . . 3 (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴[,)𝐵))
33 eqid 2610 . . 3 ((TopOpen‘ℂfld) ↾t ((𝐴[,)𝐵) ∪ {𝐴})) = ((TopOpen‘ℂfld) ↾t ((𝐴[,)𝐵) ∪ {𝐴}))
342recnd 9947 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
3523ntrtop 20684 . . . . . . . . 9 ((TopOpen‘ℂfld) ∈ Top → ((int‘(TopOpen‘ℂfld))‘ℂ) = ℂ)
3622, 35ax-mp 5 . . . . . . . 8 ((int‘(TopOpen‘ℂfld))‘ℂ) = ℂ
37 undif 4001 . . . . . . . . . . 11 ((𝐴[,)𝐵) ⊆ ℂ ↔ ((𝐴[,)𝐵) ∪ (ℂ ∖ (𝐴[,)𝐵))) = ℂ)
3810, 37sylib 207 . . . . . . . . . 10 (𝜑 → ((𝐴[,)𝐵) ∪ (ℂ ∖ (𝐴[,)𝐵))) = ℂ)
3938eqcomd 2616 . . . . . . . . 9 (𝜑 → ℂ = ((𝐴[,)𝐵) ∪ (ℂ ∖ (𝐴[,)𝐵))))
4039fveq2d 6107 . . . . . . . 8 (𝜑 → ((int‘(TopOpen‘ℂfld))‘ℂ) = ((int‘(TopOpen‘ℂfld))‘((𝐴[,)𝐵) ∪ (ℂ ∖ (𝐴[,)𝐵)))))
4136, 40syl5eqr 2658 . . . . . . 7 (𝜑 → ℂ = ((int‘(TopOpen‘ℂfld))‘((𝐴[,)𝐵) ∪ (ℂ ∖ (𝐴[,)𝐵)))))
4234, 41eleqtrd 2690 . . . . . 6 (𝜑𝐴 ∈ ((int‘(TopOpen‘ℂfld))‘((𝐴[,)𝐵) ∪ (ℂ ∖ (𝐴[,)𝐵)))))
4342, 7elind 3760 . . . . 5 (𝜑𝐴 ∈ (((int‘(TopOpen‘ℂfld))‘((𝐴[,)𝐵) ∪ (ℂ ∖ (𝐴[,)𝐵)))) ∩ (𝐴[,)𝐵)))
4422a1i 11 . . . . . 6 (𝜑 → (TopOpen‘ℂfld) ∈ Top)
45 ssid 3587 . . . . . . 7 (𝐴[,)𝐵) ⊆ (𝐴[,)𝐵)
4645a1i 11 . . . . . 6 (𝜑 → (𝐴[,)𝐵) ⊆ (𝐴[,)𝐵))
4723, 13restntr 20796 . . . . . 6 (((TopOpen‘ℂfld) ∈ Top ∧ (𝐴[,)𝐵) ⊆ ℂ ∧ (𝐴[,)𝐵) ⊆ (𝐴[,)𝐵)) → ((int‘((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵)))‘(𝐴[,)𝐵)) = (((int‘(TopOpen‘ℂfld))‘((𝐴[,)𝐵) ∪ (ℂ ∖ (𝐴[,)𝐵)))) ∩ (𝐴[,)𝐵)))
4844, 10, 46, 47syl3anc 1318 . . . . 5 (𝜑 → ((int‘((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵)))‘(𝐴[,)𝐵)) = (((int‘(TopOpen‘ℂfld))‘((𝐴[,)𝐵) ∪ (ℂ ∖ (𝐴[,)𝐵)))) ∩ (𝐴[,)𝐵)))
4943, 48eleqtrrd 2691 . . . 4 (𝜑𝐴 ∈ ((int‘((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵)))‘(𝐴[,)𝐵)))
507snssd 4281 . . . . . . . . 9 (𝜑 → {𝐴} ⊆ (𝐴[,)𝐵))
51 ssequn2 3748 . . . . . . . . 9 ({𝐴} ⊆ (𝐴[,)𝐵) ↔ ((𝐴[,)𝐵) ∪ {𝐴}) = (𝐴[,)𝐵))
5250, 51sylib 207 . . . . . . . 8 (𝜑 → ((𝐴[,)𝐵) ∪ {𝐴}) = (𝐴[,)𝐵))
5352eqcomd 2616 . . . . . . 7 (𝜑 → (𝐴[,)𝐵) = ((𝐴[,)𝐵) ∪ {𝐴}))
5453oveq2d 6565 . . . . . 6 (𝜑 → ((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵)) = ((TopOpen‘ℂfld) ↾t ((𝐴[,)𝐵) ∪ {𝐴})))
5554fveq2d 6107 . . . . 5 (𝜑 → (int‘((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵))) = (int‘((TopOpen‘ℂfld) ↾t ((𝐴[,)𝐵) ∪ {𝐴}))))
56 snunioo1 38585 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ((𝐴(,)𝐵) ∪ {𝐴}) = (𝐴[,)𝐵))
573, 4, 6, 56syl3anc 1318 . . . . . 6 (𝜑 → ((𝐴(,)𝐵) ∪ {𝐴}) = (𝐴[,)𝐵))
5857eqcomd 2616 . . . . 5 (𝜑 → (𝐴[,)𝐵) = ((𝐴(,)𝐵) ∪ {𝐴}))
5955, 58fveq12d 6109 . . . 4 (𝜑 → ((int‘((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵)))‘(𝐴[,)𝐵)) = ((int‘((TopOpen‘ℂfld) ↾t ((𝐴[,)𝐵) ∪ {𝐴})))‘((𝐴(,)𝐵) ∪ {𝐴})))
6049, 59eleqtrd 2690 . . 3 (𝜑𝐴 ∈ ((int‘((TopOpen‘ℂfld) ↾t ((𝐴[,)𝐵) ∪ {𝐴})))‘((𝐴(,)𝐵) ∪ {𝐴})))
6130, 32, 10, 12, 33, 60limcres 23456 . 2 (𝜑 → ((𝐹 ↾ (𝐴(,)𝐵)) lim 𝐴) = (𝐹 lim 𝐴))
628, 61eleqtrrd 2691 1 (𝜑 → (𝐹𝐴) ∈ ((𝐹 ↾ (𝐴(,)𝐵)) lim 𝐴))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   = wceq 1475   ∈ wcel 1977  ∀wral 2896   ∖ cdif 3537   ∪ cun 3538   ∩ cin 3539   ⊆ wss 3540  {csn 4125   class class class wbr 4583   ↾ cres 5040  ⟶wf 5800  ‘cfv 5804  (class class class)co 6549  ℂcc 9813  ℝcr 9814  ℝ*cxr 9952   < clt 9953  (,)cioo 12046  [,)cico 12048   ↾t crest 15904  TopOpenctopn 15905  ℂfldccnfld 19567  Topctop 20517  TopOnctopon 20518  intcnt 20631   Cn ccn 20838   CnP ccnp 20839  –cn→ccncf 22487   limℂ climc 23432 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fi 8200  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ico 12052  df-icc 12053  df-fz 12198  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-plusg 15781  df-mulr 15782  df-starv 15783  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-rest 15906  df-topn 15907  df-topgen 15927  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-ntr 20634  df-cn 20841  df-cnp 20842  df-xms 21935  df-ms 21936  df-cncf 22489  df-limc 23436 This theorem is referenced by:  fourierdlem46  39045
 Copyright terms: Public domain W3C validator