MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restntr Structured version   Unicode version

Theorem restntr 20184
Description: An interior in a subspace topology. Willard in General Topology says that there is no analog of restcls 20183 for interiors. In some sense, that is true. (Contributed by Jeff Hankins, 23-Jan-2010.) (Revised by Mario Carneiro, 15-Dec-2013.)
Hypotheses
Ref Expression
restcls.1  |-  X  = 
U. J
restcls.2  |-  K  =  ( Jt  Y )
Assertion
Ref Expression
restntr  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  (
( int `  K
) `  S )  =  ( ( ( int `  J ) `
 ( S  u.  ( X  \  Y ) ) )  i^i  Y
) )

Proof of Theorem restntr
Dummy variables  x  o are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 restcls.2 . . . . . . 7  |-  K  =  ( Jt  Y )
21fveq2i 5880 . . . . . 6  |-  ( int `  K )  =  ( int `  ( Jt  Y ) )
32fveq1i 5878 . . . . 5  |-  ( ( int `  K ) `
 S )  =  ( ( int `  ( Jt  Y ) ) `  S )
4 restcls.1 . . . . . . . . . 10  |-  X  = 
U. J
54topopn 19922 . . . . . . . . 9  |-  ( J  e.  Top  ->  X  e.  J )
6 ssexg 4566 . . . . . . . . . 10  |-  ( ( Y  C_  X  /\  X  e.  J )  ->  Y  e.  _V )
76ancoms 454 . . . . . . . . 9  |-  ( ( X  e.  J  /\  Y  C_  X )  ->  Y  e.  _V )
85, 7sylan 473 . . . . . . . 8  |-  ( ( J  e.  Top  /\  Y  C_  X )  ->  Y  e.  _V )
9 resttop 20162 . . . . . . . 8  |-  ( ( J  e.  Top  /\  Y  e.  _V )  ->  ( Jt  Y )  e.  Top )
108, 9syldan 472 . . . . . . 7  |-  ( ( J  e.  Top  /\  Y  C_  X )  -> 
( Jt  Y )  e.  Top )
11103adant3 1025 . . . . . 6  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  ( Jt  Y )  e.  Top )
124restuni 20164 . . . . . . . 8  |-  ( ( J  e.  Top  /\  Y  C_  X )  ->  Y  =  U. ( Jt  Y ) )
1312sseq2d 3492 . . . . . . 7  |-  ( ( J  e.  Top  /\  Y  C_  X )  -> 
( S  C_  Y  <->  S 
C_  U. ( Jt  Y ) ) )
1413biimp3a 1364 . . . . . 6  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  S  C_ 
U. ( Jt  Y ) )
15 eqid 2422 . . . . . . 7  |-  U. ( Jt  Y )  =  U. ( Jt  Y )
1615ntropn 20050 . . . . . 6  |-  ( ( ( Jt  Y )  e.  Top  /\  S  C_  U. ( Jt  Y ) )  -> 
( ( int `  ( Jt  Y ) ) `  S )  e.  ( Jt  Y ) )
1711, 14, 16syl2anc 665 . . . . 5  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  (
( int `  ( Jt  Y ) ) `  S )  e.  ( Jt  Y ) )
183, 17syl5eqel 2514 . . . 4  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  (
( int `  K
) `  S )  e.  ( Jt  Y ) )
19 simp1 1005 . . . . 5  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  J  e.  Top )
20 uniexg 6598 . . . . . . . . 9  |-  ( J  e.  Top  ->  U. J  e.  _V )
214, 20syl5eqel 2514 . . . . . . . 8  |-  ( J  e.  Top  ->  X  e.  _V )
22 ssexg 4566 . . . . . . . 8  |-  ( ( Y  C_  X  /\  X  e.  _V )  ->  Y  e.  _V )
2321, 22sylan2 476 . . . . . . 7  |-  ( ( Y  C_  X  /\  J  e.  Top )  ->  Y  e.  _V )
2423ancoms 454 . . . . . 6  |-  ( ( J  e.  Top  /\  Y  C_  X )  ->  Y  e.  _V )
25243adant3 1025 . . . . 5  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  Y  e.  _V )
26 elrest 15313 . . . . 5  |-  ( ( J  e.  Top  /\  Y  e.  _V )  ->  ( ( ( int `  K ) `  S
)  e.  ( Jt  Y )  <->  E. o  e.  J  ( ( int `  K
) `  S )  =  ( o  i^i 
Y ) ) )
2719, 25, 26syl2anc 665 . . . 4  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  (
( ( int `  K
) `  S )  e.  ( Jt  Y )  <->  E. o  e.  J  ( ( int `  K ) `  S )  =  ( o  i^i  Y ) ) )
2818, 27mpbid 213 . . 3  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  E. o  e.  J  ( ( int `  K ) `  S )  =  ( o  i^i  Y ) )
294eltopss 19923 . . . . . . . . . . 11  |-  ( ( J  e.  Top  /\  o  e.  J )  ->  o  C_  X )
3029sseld 3463 . . . . . . . . . 10  |-  ( ( J  e.  Top  /\  o  e.  J )  ->  ( x  e.  o  ->  x  e.  X
) )
3130adantrr 721 . . . . . . . . 9  |-  ( ( J  e.  Top  /\  ( o  e.  J  /\  ( ( int `  K
) `  S )  =  ( o  i^i 
Y ) ) )  ->  ( x  e.  o  ->  x  e.  X ) )
32313ad2antl1 1167 . . . . . . . 8  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  ( o  e.  J  /\  ( ( int `  K
) `  S )  =  ( o  i^i 
Y ) ) )  ->  ( x  e.  o  ->  x  e.  X ) )
33 eldif 3446 . . . . . . . . . 10  |-  ( x  e.  ( X  \  Y )  <->  ( x  e.  X  /\  -.  x  e.  Y ) )
3433simplbi2 629 . . . . . . . . 9  |-  ( x  e.  X  ->  ( -.  x  e.  Y  ->  x  e.  ( X 
\  Y ) ) )
3534orrd 379 . . . . . . . 8  |-  ( x  e.  X  ->  (
x  e.  Y  \/  x  e.  ( X  \  Y ) ) )
3632, 35syl6 34 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  ( o  e.  J  /\  ( ( int `  K
) `  S )  =  ( o  i^i 
Y ) ) )  ->  ( x  e.  o  ->  ( x  e.  Y  \/  x  e.  ( X  \  Y
) ) ) )
37 elin 3649 . . . . . . . . . . 11  |-  ( x  e.  ( o  i^i 
Y )  <->  ( x  e.  o  /\  x  e.  Y ) )
38 eleq2 2495 . . . . . . . . . . . . 13  |-  ( ( ( int `  K
) `  S )  =  ( o  i^i 
Y )  ->  (
x  e.  ( ( int `  K ) `
 S )  <->  x  e.  ( o  i^i  Y
) ) )
39 elun1 3633 . . . . . . . . . . . . 13  |-  ( x  e.  ( ( int `  K ) `  S
)  ->  x  e.  ( ( ( int `  K ) `  S
)  u.  ( X 
\  Y ) ) )
4038, 39syl6bir 232 . . . . . . . . . . . 12  |-  ( ( ( int `  K
) `  S )  =  ( o  i^i 
Y )  ->  (
x  e.  ( o  i^i  Y )  ->  x  e.  ( (
( int `  K
) `  S )  u.  ( X  \  Y
) ) ) )
4140ad2antll 733 . . . . . . . . . . 11  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  ( o  e.  J  /\  ( ( int `  K
) `  S )  =  ( o  i^i 
Y ) ) )  ->  ( x  e.  ( o  i^i  Y
)  ->  x  e.  ( ( ( int `  K ) `  S
)  u.  ( X 
\  Y ) ) ) )
4237, 41syl5bir 221 . . . . . . . . . 10  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  ( o  e.  J  /\  ( ( int `  K
) `  S )  =  ( o  i^i 
Y ) ) )  ->  ( ( x  e.  o  /\  x  e.  Y )  ->  x  e.  ( ( ( int `  K ) `  S
)  u.  ( X 
\  Y ) ) ) )
4342expdimp 438 . . . . . . . . 9  |-  ( ( ( ( J  e. 
Top  /\  Y  C_  X  /\  S  C_  Y )  /\  ( o  e.  J  /\  ( ( int `  K ) `
 S )  =  ( o  i^i  Y
) ) )  /\  x  e.  o )  ->  ( x  e.  Y  ->  x  e.  ( ( ( int `  K
) `  S )  u.  ( X  \  Y
) ) ) )
44 elun2 3634 . . . . . . . . . 10  |-  ( x  e.  ( X  \  Y )  ->  x  e.  ( ( ( int `  K ) `  S
)  u.  ( X 
\  Y ) ) )
4544a1i 11 . . . . . . . . 9  |-  ( ( ( ( J  e. 
Top  /\  Y  C_  X  /\  S  C_  Y )  /\  ( o  e.  J  /\  ( ( int `  K ) `
 S )  =  ( o  i^i  Y
) ) )  /\  x  e.  o )  ->  ( x  e.  ( X  \  Y )  ->  x  e.  ( ( ( int `  K
) `  S )  u.  ( X  \  Y
) ) ) )
4643, 45jaod 381 . . . . . . . 8  |-  ( ( ( ( J  e. 
Top  /\  Y  C_  X  /\  S  C_  Y )  /\  ( o  e.  J  /\  ( ( int `  K ) `
 S )  =  ( o  i^i  Y
) ) )  /\  x  e.  o )  ->  ( ( x  e.  Y  \/  x  e.  ( X  \  Y
) )  ->  x  e.  ( ( ( int `  K ) `  S
)  u.  ( X 
\  Y ) ) ) )
4746ex 435 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  ( o  e.  J  /\  ( ( int `  K
) `  S )  =  ( o  i^i 
Y ) ) )  ->  ( x  e.  o  ->  ( (
x  e.  Y  \/  x  e.  ( X  \  Y ) )  ->  x  e.  ( (
( int `  K
) `  S )  u.  ( X  \  Y
) ) ) ) )
4836, 47mpdd 41 . . . . . 6  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  ( o  e.  J  /\  ( ( int `  K
) `  S )  =  ( o  i^i 
Y ) ) )  ->  ( x  e.  o  ->  x  e.  ( ( ( int `  K ) `  S
)  u.  ( X 
\  Y ) ) ) )
4948ssrdv 3470 . . . . 5  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  ( o  e.  J  /\  ( ( int `  K
) `  S )  =  ( o  i^i 
Y ) ) )  ->  o  C_  (
( ( int `  K
) `  S )  u.  ( X  \  Y
) ) )
5011adantr 466 . . . . . . . 8  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  ( o  e.  J  /\  ( ( int `  K
) `  S )  =  ( o  i^i 
Y ) ) )  ->  ( Jt  Y )  e.  Top )
511, 50syl5eqel 2514 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  ( o  e.  J  /\  ( ( int `  K
) `  S )  =  ( o  i^i 
Y ) ) )  ->  K  e.  Top )
5214adantr 466 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  ( o  e.  J  /\  ( ( int `  K
) `  S )  =  ( o  i^i 
Y ) ) )  ->  S  C_  U. ( Jt  Y ) )
531unieqi 4225 . . . . . . . . 9  |-  U. K  =  U. ( Jt  Y )
5453eqcomi 2435 . . . . . . . 8  |-  U. ( Jt  Y )  =  U. K
5554ntrss2 20058 . . . . . . 7  |-  ( ( K  e.  Top  /\  S  C_  U. ( Jt  Y ) )  ->  (
( int `  K
) `  S )  C_  S )
5651, 52, 55syl2anc 665 . . . . . 6  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  ( o  e.  J  /\  ( ( int `  K
) `  S )  =  ( o  i^i 
Y ) ) )  ->  ( ( int `  K ) `  S
)  C_  S )
57 unss1 3635 . . . . . 6  |-  ( ( ( int `  K
) `  S )  C_  S  ->  ( (
( int `  K
) `  S )  u.  ( X  \  Y
) )  C_  ( S  u.  ( X  \  Y ) ) )
5856, 57syl 17 . . . . 5  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  ( o  e.  J  /\  ( ( int `  K
) `  S )  =  ( o  i^i 
Y ) ) )  ->  ( ( ( int `  K ) `
 S )  u.  ( X  \  Y
) )  C_  ( S  u.  ( X  \  Y ) ) )
5949, 58sstrd 3474 . . . 4  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  ( o  e.  J  /\  ( ( int `  K
) `  S )  =  ( o  i^i 
Y ) ) )  ->  o  C_  ( S  u.  ( X  \  Y ) ) )
60 simpl1 1008 . . . . . . . . . 10  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  ( o  e.  J  /\  o  C_  ( S  u.  ( X  \  Y ) ) ) )  ->  J  e.  Top )
61 sstr 3472 . . . . . . . . . . . . . . 15  |-  ( ( S  C_  Y  /\  Y  C_  X )  ->  S  C_  X )
6261ancoms 454 . . . . . . . . . . . . . 14  |-  ( ( Y  C_  X  /\  S  C_  Y )  ->  S  C_  X )
63623adant1 1023 . . . . . . . . . . . . 13  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  S  C_  X )
6463adantr 466 . . . . . . . . . . . 12  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  ( o  e.  J  /\  o  C_  ( S  u.  ( X  \  Y ) ) ) )  ->  S  C_  X
)
65 difss 3592 . . . . . . . . . . . 12  |-  ( X 
\  Y )  C_  X
6664, 65jctir 540 . . . . . . . . . . 11  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  ( o  e.  J  /\  o  C_  ( S  u.  ( X  \  Y ) ) ) )  ->  ( S  C_  X  /\  ( X 
\  Y )  C_  X ) )
67 unss 3640 . . . . . . . . . . 11  |-  ( ( S  C_  X  /\  ( X  \  Y ) 
C_  X )  <->  ( S  u.  ( X  \  Y
) )  C_  X
)
6866, 67sylib 199 . . . . . . . . . 10  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  ( o  e.  J  /\  o  C_  ( S  u.  ( X  \  Y ) ) ) )  ->  ( S  u.  ( X  \  Y
) )  C_  X
)
69 simprl 762 . . . . . . . . . 10  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  ( o  e.  J  /\  o  C_  ( S  u.  ( X  \  Y ) ) ) )  ->  o  e.  J )
70 simprr 764 . . . . . . . . . 10  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  ( o  e.  J  /\  o  C_  ( S  u.  ( X  \  Y ) ) ) )  ->  o  C_  ( S  u.  ( X  \  Y ) ) )
714ssntr 20059 . . . . . . . . . 10  |-  ( ( ( J  e.  Top  /\  ( S  u.  ( X  \  Y ) ) 
C_  X )  /\  ( o  e.  J  /\  o  C_  ( S  u.  ( X  \  Y ) ) ) )  ->  o  C_  ( ( int `  J
) `  ( S  u.  ( X  \  Y
) ) ) )
7260, 68, 69, 70, 71syl22anc 1265 . . . . . . . . 9  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  ( o  e.  J  /\  o  C_  ( S  u.  ( X  \  Y ) ) ) )  ->  o  C_  ( ( int `  J
) `  ( S  u.  ( X  \  Y
) ) ) )
73 ssrin 3687 . . . . . . . . 9  |-  ( o 
C_  ( ( int `  J ) `  ( S  u.  ( X  \  Y ) ) )  ->  ( o  i^i 
Y )  C_  (
( ( int `  J
) `  ( S  u.  ( X  \  Y
) ) )  i^i 
Y ) )
7472, 73syl 17 . . . . . . . 8  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  ( o  e.  J  /\  o  C_  ( S  u.  ( X  \  Y ) ) ) )  ->  ( o  i^i  Y )  C_  (
( ( int `  J
) `  ( S  u.  ( X  \  Y
) ) )  i^i 
Y ) )
75 sseq1 3485 . . . . . . . 8  |-  ( ( ( int `  K
) `  S )  =  ( o  i^i 
Y )  ->  (
( ( int `  K
) `  S )  C_  ( ( ( int `  J ) `  ( S  u.  ( X  \  Y ) ) )  i^i  Y )  <->  ( o  i^i  Y )  C_  (
( ( int `  J
) `  ( S  u.  ( X  \  Y
) ) )  i^i 
Y ) ) )
7674, 75syl5ibrcom 225 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  ( o  e.  J  /\  o  C_  ( S  u.  ( X  \  Y ) ) ) )  ->  ( (
( int `  K
) `  S )  =  ( o  i^i 
Y )  ->  (
( int `  K
) `  S )  C_  ( ( ( int `  J ) `  ( S  u.  ( X  \  Y ) ) )  i^i  Y ) ) )
7776expr 618 . . . . . 6  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  o  e.  J )  ->  ( o  C_  ( S  u.  ( X  \  Y ) )  -> 
( ( ( int `  K ) `  S
)  =  ( o  i^i  Y )  -> 
( ( int `  K
) `  S )  C_  ( ( ( int `  J ) `  ( S  u.  ( X  \  Y ) ) )  i^i  Y ) ) ) )
7877com23 81 . . . . 5  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  o  e.  J )  ->  ( ( ( int `  K ) `  S
)  =  ( o  i^i  Y )  -> 
( o  C_  ( S  u.  ( X  \  Y ) )  -> 
( ( int `  K
) `  S )  C_  ( ( ( int `  J ) `  ( S  u.  ( X  \  Y ) ) )  i^i  Y ) ) ) )
7978impr 623 . . . 4  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  ( o  e.  J  /\  ( ( int `  K
) `  S )  =  ( o  i^i 
Y ) ) )  ->  ( o  C_  ( S  u.  ( X  \  Y ) )  ->  ( ( int `  K ) `  S
)  C_  ( (
( int `  J
) `  ( S  u.  ( X  \  Y
) ) )  i^i 
Y ) ) )
8059, 79mpd 15 . . 3  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  ( o  e.  J  /\  ( ( int `  K
) `  S )  =  ( o  i^i 
Y ) ) )  ->  ( ( int `  K ) `  S
)  C_  ( (
( int `  J
) `  ( S  u.  ( X  \  Y
) ) )  i^i 
Y ) )
8128, 80rexlimddv 2921 . 2  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  (
( int `  K
) `  S )  C_  ( ( ( int `  J ) `  ( S  u.  ( X  \  Y ) ) )  i^i  Y ) )
821, 11syl5eqel 2514 . . 3  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  K  e.  Top )
8383adant3 1025 . . . . 5  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  Y  e.  _V )
8463, 65jctir 540 . . . . . . 7  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  ( S  C_  X  /\  ( X  \  Y )  C_  X ) )
8584, 67sylib 199 . . . . . 6  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  ( S  u.  ( X  \  Y ) )  C_  X )
864ntropn 20050 . . . . . 6  |-  ( ( J  e.  Top  /\  ( S  u.  ( X  \  Y ) ) 
C_  X )  -> 
( ( int `  J
) `  ( S  u.  ( X  \  Y
) ) )  e.  J )
8719, 85, 86syl2anc 665 . . . . 5  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  (
( int `  J
) `  ( S  u.  ( X  \  Y
) ) )  e.  J )
88 elrestr 15314 . . . . 5  |-  ( ( J  e.  Top  /\  Y  e.  _V  /\  (
( int `  J
) `  ( S  u.  ( X  \  Y
) ) )  e.  J )  ->  (
( ( int `  J
) `  ( S  u.  ( X  \  Y
) ) )  i^i 
Y )  e.  ( Jt  Y ) )
8919, 83, 87, 88syl3anc 1264 . . . 4  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  (
( ( int `  J
) `  ( S  u.  ( X  \  Y
) ) )  i^i 
Y )  e.  ( Jt  Y ) )
9089, 1syl6eleqr 2521 . . 3  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  (
( ( int `  J
) `  ( S  u.  ( X  \  Y
) ) )  i^i 
Y )  e.  K
)
914ntrss2 20058 . . . . . 6  |-  ( ( J  e.  Top  /\  ( S  u.  ( X  \  Y ) ) 
C_  X )  -> 
( ( int `  J
) `  ( S  u.  ( X  \  Y
) ) )  C_  ( S  u.  ( X  \  Y ) ) )
9219, 85, 91syl2anc 665 . . . . 5  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  (
( int `  J
) `  ( S  u.  ( X  \  Y
) ) )  C_  ( S  u.  ( X  \  Y ) ) )
93 ssrin 3687 . . . . 5  |-  ( ( ( int `  J
) `  ( S  u.  ( X  \  Y
) ) )  C_  ( S  u.  ( X  \  Y ) )  ->  ( ( ( int `  J ) `
 ( S  u.  ( X  \  Y ) ) )  i^i  Y
)  C_  ( ( S  u.  ( X  \  Y ) )  i^i 
Y ) )
9492, 93syl 17 . . . 4  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  (
( ( int `  J
) `  ( S  u.  ( X  \  Y
) ) )  i^i 
Y )  C_  (
( S  u.  ( X  \  Y ) )  i^i  Y ) )
95 elin 3649 . . . . . . 7  |-  ( x  e.  ( ( S  u.  ( X  \  Y ) )  i^i 
Y )  <->  ( x  e.  ( S  u.  ( X  \  Y ) )  /\  x  e.  Y
) )
96 elun 3606 . . . . . . . . 9  |-  ( x  e.  ( S  u.  ( X  \  Y ) )  <->  ( x  e.  S  \/  x  e.  ( X  \  Y
) ) )
97 orcom 388 . . . . . . . . . 10  |-  ( ( x  e.  S  \/  x  e.  ( X  \  Y ) )  <->  ( x  e.  ( X  \  Y
)  \/  x  e.  S ) )
98 df-or 371 . . . . . . . . . 10  |-  ( ( x  e.  ( X 
\  Y )  \/  x  e.  S )  <-> 
( -.  x  e.  ( X  \  Y
)  ->  x  e.  S ) )
9997, 98bitri 252 . . . . . . . . 9  |-  ( ( x  e.  S  \/  x  e.  ( X  \  Y ) )  <->  ( -.  x  e.  ( X  \  Y )  ->  x  e.  S ) )
10096, 99bitri 252 . . . . . . . 8  |-  ( x  e.  ( S  u.  ( X  \  Y ) )  <->  ( -.  x  e.  ( X  \  Y
)  ->  x  e.  S ) )
101100anbi1i 699 . . . . . . 7  |-  ( ( x  e.  ( S  u.  ( X  \  Y ) )  /\  x  e.  Y )  <->  ( ( -.  x  e.  ( X  \  Y
)  ->  x  e.  S )  /\  x  e.  Y ) )
10295, 101bitri 252 . . . . . 6  |-  ( x  e.  ( ( S  u.  ( X  \  Y ) )  i^i 
Y )  <->  ( ( -.  x  e.  ( X  \  Y )  ->  x  e.  S )  /\  x  e.  Y
) )
103 elndif 3589 . . . . . . . . 9  |-  ( x  e.  Y  ->  -.  x  e.  ( X  \  Y ) )
104 pm2.27 40 . . . . . . . . 9  |-  ( -.  x  e.  ( X 
\  Y )  -> 
( ( -.  x  e.  ( X  \  Y
)  ->  x  e.  S )  ->  x  e.  S ) )
105103, 104syl 17 . . . . . . . 8  |-  ( x  e.  Y  ->  (
( -.  x  e.  ( X  \  Y
)  ->  x  e.  S )  ->  x  e.  S ) )
106105impcom 431 . . . . . . 7  |-  ( ( ( -.  x  e.  ( X  \  Y
)  ->  x  e.  S )  /\  x  e.  Y )  ->  x  e.  S )
107106a1i 11 . . . . . 6  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  (
( ( -.  x  e.  ( X  \  Y
)  ->  x  e.  S )  /\  x  e.  Y )  ->  x  e.  S ) )
108102, 107syl5bi 220 . . . . 5  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  (
x  e.  ( ( S  u.  ( X 
\  Y ) )  i^i  Y )  ->  x  e.  S )
)
109108ssrdv 3470 . . . 4  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  (
( S  u.  ( X  \  Y ) )  i^i  Y )  C_  S )
11094, 109sstrd 3474 . . 3  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  (
( ( int `  J
) `  ( S  u.  ( X  \  Y
) ) )  i^i 
Y )  C_  S
)
11154ssntr 20059 . . 3  |-  ( ( ( K  e.  Top  /\  S  C_  U. ( Jt  Y ) )  /\  ( ( ( ( int `  J ) `
 ( S  u.  ( X  \  Y ) ) )  i^i  Y
)  e.  K  /\  ( ( ( int `  J ) `  ( S  u.  ( X  \  Y ) ) )  i^i  Y )  C_  S ) )  -> 
( ( ( int `  J ) `  ( S  u.  ( X  \  Y ) ) )  i^i  Y )  C_  ( ( int `  K
) `  S )
)
11282, 14, 90, 110, 111syl22anc 1265 . 2  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  (
( ( int `  J
) `  ( S  u.  ( X  \  Y
) ) )  i^i 
Y )  C_  (
( int `  K
) `  S )
)
11381, 112eqssd 3481 1  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  (
( int `  K
) `  S )  =  ( ( ( int `  J ) `
 ( S  u.  ( X  \  Y ) ) )  i^i  Y
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 187    \/ wo 369    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1868   E.wrex 2776   _Vcvv 3081    \ cdif 3433    u. cun 3434    i^i cin 3435    C_ wss 3436   U.cuni 4216   ` cfv 5597  (class class class)co 6301   ↾t crest 15306   Topctop 19903   intcnt 20018
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1839  ax-8 1870  ax-9 1872  ax-10 1887  ax-11 1892  ax-12 1905  ax-13 2053  ax-ext 2400  ax-rep 4533  ax-sep 4543  ax-nul 4551  ax-pow 4598  ax-pr 4656  ax-un 6593
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2269  df-mo 2270  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2572  df-ne 2620  df-ral 2780  df-rex 2781  df-reu 2782  df-rab 2784  df-v 3083  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-pss 3452  df-nul 3762  df-if 3910  df-pw 3981  df-sn 3997  df-pr 3999  df-tp 4001  df-op 4003  df-uni 4217  df-int 4253  df-iun 4298  df-br 4421  df-opab 4480  df-mpt 4481  df-tr 4516  df-eprel 4760  df-id 4764  df-po 4770  df-so 4771  df-fr 4808  df-we 4810  df-xp 4855  df-rel 4856  df-cnv 4857  df-co 4858  df-dm 4859  df-rn 4860  df-res 4861  df-ima 4862  df-pred 5395  df-ord 5441  df-on 5442  df-lim 5443  df-suc 5444  df-iota 5561  df-fun 5599  df-fn 5600  df-f 5601  df-f1 5602  df-fo 5603  df-f1o 5604  df-fv 5605  df-ov 6304  df-oprab 6305  df-mpt2 6306  df-om 6703  df-1st 6803  df-2nd 6804  df-wrecs 7032  df-recs 7094  df-rdg 7132  df-oadd 7190  df-er 7367  df-en 7574  df-fin 7577  df-fi 7927  df-rest 15308  df-topgen 15329  df-top 19907  df-bases 19908  df-topon 19909  df-ntr 20021
This theorem is referenced by:  llycmpkgen2  20551  dvreslem  22850  dvres2lem  22851  dvaddbr  22878  dvmulbr  22879  dvcnvrelem2  22956  limciccioolb  37520  limcicciooub  37536  ioccncflimc  37582  icocncflimc  37586  cncfiooicclem1  37590  fourierdlem62  37851
  Copyright terms: Public domain W3C validator