MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restntr Structured version   Visualization version   Unicode version

Theorem restntr 20191
Description: An interior in a subspace topology. Willard in General Topology says that there is no analogue of restcls 20190 for interiors. In some sense, that is true. (Contributed by Jeff Hankins, 23-Jan-2010.) (Revised by Mario Carneiro, 15-Dec-2013.)
Hypotheses
Ref Expression
restcls.1  |-  X  = 
U. J
restcls.2  |-  K  =  ( Jt  Y )
Assertion
Ref Expression
restntr  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  (
( int `  K
) `  S )  =  ( ( ( int `  J ) `
 ( S  u.  ( X  \  Y ) ) )  i^i  Y
) )

Proof of Theorem restntr
Dummy variables  x  o are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 restcls.2 . . . . . . 7  |-  K  =  ( Jt  Y )
21fveq2i 5866 . . . . . 6  |-  ( int `  K )  =  ( int `  ( Jt  Y ) )
32fveq1i 5864 . . . . 5  |-  ( ( int `  K ) `
 S )  =  ( ( int `  ( Jt  Y ) ) `  S )
4 restcls.1 . . . . . . . . . 10  |-  X  = 
U. J
54topopn 19929 . . . . . . . . 9  |-  ( J  e.  Top  ->  X  e.  J )
6 ssexg 4548 . . . . . . . . . 10  |-  ( ( Y  C_  X  /\  X  e.  J )  ->  Y  e.  _V )
76ancoms 455 . . . . . . . . 9  |-  ( ( X  e.  J  /\  Y  C_  X )  ->  Y  e.  _V )
85, 7sylan 474 . . . . . . . 8  |-  ( ( J  e.  Top  /\  Y  C_  X )  ->  Y  e.  _V )
9 resttop 20169 . . . . . . . 8  |-  ( ( J  e.  Top  /\  Y  e.  _V )  ->  ( Jt  Y )  e.  Top )
108, 9syldan 473 . . . . . . 7  |-  ( ( J  e.  Top  /\  Y  C_  X )  -> 
( Jt  Y )  e.  Top )
11103adant3 1027 . . . . . 6  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  ( Jt  Y )  e.  Top )
124restuni 20171 . . . . . . . 8  |-  ( ( J  e.  Top  /\  Y  C_  X )  ->  Y  =  U. ( Jt  Y ) )
1312sseq2d 3459 . . . . . . 7  |-  ( ( J  e.  Top  /\  Y  C_  X )  -> 
( S  C_  Y  <->  S 
C_  U. ( Jt  Y ) ) )
1413biimp3a 1368 . . . . . 6  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  S  C_ 
U. ( Jt  Y ) )
15 eqid 2450 . . . . . . 7  |-  U. ( Jt  Y )  =  U. ( Jt  Y )
1615ntropn 20057 . . . . . 6  |-  ( ( ( Jt  Y )  e.  Top  /\  S  C_  U. ( Jt  Y ) )  -> 
( ( int `  ( Jt  Y ) ) `  S )  e.  ( Jt  Y ) )
1711, 14, 16syl2anc 666 . . . . 5  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  (
( int `  ( Jt  Y ) ) `  S )  e.  ( Jt  Y ) )
183, 17syl5eqel 2532 . . . 4  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  (
( int `  K
) `  S )  e.  ( Jt  Y ) )
19 simp1 1007 . . . . 5  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  J  e.  Top )
20 uniexg 6585 . . . . . . . . 9  |-  ( J  e.  Top  ->  U. J  e.  _V )
214, 20syl5eqel 2532 . . . . . . . 8  |-  ( J  e.  Top  ->  X  e.  _V )
22 ssexg 4548 . . . . . . . 8  |-  ( ( Y  C_  X  /\  X  e.  _V )  ->  Y  e.  _V )
2321, 22sylan2 477 . . . . . . 7  |-  ( ( Y  C_  X  /\  J  e.  Top )  ->  Y  e.  _V )
2423ancoms 455 . . . . . 6  |-  ( ( J  e.  Top  /\  Y  C_  X )  ->  Y  e.  _V )
25243adant3 1027 . . . . 5  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  Y  e.  _V )
26 elrest 15319 . . . . 5  |-  ( ( J  e.  Top  /\  Y  e.  _V )  ->  ( ( ( int `  K ) `  S
)  e.  ( Jt  Y )  <->  E. o  e.  J  ( ( int `  K
) `  S )  =  ( o  i^i 
Y ) ) )
2719, 25, 26syl2anc 666 . . . 4  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  (
( ( int `  K
) `  S )  e.  ( Jt  Y )  <->  E. o  e.  J  ( ( int `  K ) `  S )  =  ( o  i^i  Y ) ) )
2818, 27mpbid 214 . . 3  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  E. o  e.  J  ( ( int `  K ) `  S )  =  ( o  i^i  Y ) )
294eltopss 19930 . . . . . . . . . . 11  |-  ( ( J  e.  Top  /\  o  e.  J )  ->  o  C_  X )
3029sseld 3430 . . . . . . . . . 10  |-  ( ( J  e.  Top  /\  o  e.  J )  ->  ( x  e.  o  ->  x  e.  X
) )
3130adantrr 722 . . . . . . . . 9  |-  ( ( J  e.  Top  /\  ( o  e.  J  /\  ( ( int `  K
) `  S )  =  ( o  i^i 
Y ) ) )  ->  ( x  e.  o  ->  x  e.  X ) )
32313ad2antl1 1169 . . . . . . . 8  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  ( o  e.  J  /\  ( ( int `  K
) `  S )  =  ( o  i^i 
Y ) ) )  ->  ( x  e.  o  ->  x  e.  X ) )
33 eldif 3413 . . . . . . . . . 10  |-  ( x  e.  ( X  \  Y )  <->  ( x  e.  X  /\  -.  x  e.  Y ) )
3433simplbi2 630 . . . . . . . . 9  |-  ( x  e.  X  ->  ( -.  x  e.  Y  ->  x  e.  ( X 
\  Y ) ) )
3534orrd 380 . . . . . . . 8  |-  ( x  e.  X  ->  (
x  e.  Y  \/  x  e.  ( X  \  Y ) ) )
3632, 35syl6 34 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  ( o  e.  J  /\  ( ( int `  K
) `  S )  =  ( o  i^i 
Y ) ) )  ->  ( x  e.  o  ->  ( x  e.  Y  \/  x  e.  ( X  \  Y
) ) ) )
37 elin 3616 . . . . . . . . . . 11  |-  ( x  e.  ( o  i^i 
Y )  <->  ( x  e.  o  /\  x  e.  Y ) )
38 eleq2 2517 . . . . . . . . . . . . 13  |-  ( ( ( int `  K
) `  S )  =  ( o  i^i 
Y )  ->  (
x  e.  ( ( int `  K ) `
 S )  <->  x  e.  ( o  i^i  Y
) ) )
39 elun1 3600 . . . . . . . . . . . . 13  |-  ( x  e.  ( ( int `  K ) `  S
)  ->  x  e.  ( ( ( int `  K ) `  S
)  u.  ( X 
\  Y ) ) )
4038, 39syl6bir 233 . . . . . . . . . . . 12  |-  ( ( ( int `  K
) `  S )  =  ( o  i^i 
Y )  ->  (
x  e.  ( o  i^i  Y )  ->  x  e.  ( (
( int `  K
) `  S )  u.  ( X  \  Y
) ) ) )
4140ad2antll 734 . . . . . . . . . . 11  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  ( o  e.  J  /\  ( ( int `  K
) `  S )  =  ( o  i^i 
Y ) ) )  ->  ( x  e.  ( o  i^i  Y
)  ->  x  e.  ( ( ( int `  K ) `  S
)  u.  ( X 
\  Y ) ) ) )
4237, 41syl5bir 222 . . . . . . . . . 10  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  ( o  e.  J  /\  ( ( int `  K
) `  S )  =  ( o  i^i 
Y ) ) )  ->  ( ( x  e.  o  /\  x  e.  Y )  ->  x  e.  ( ( ( int `  K ) `  S
)  u.  ( X 
\  Y ) ) ) )
4342expdimp 439 . . . . . . . . 9  |-  ( ( ( ( J  e. 
Top  /\  Y  C_  X  /\  S  C_  Y )  /\  ( o  e.  J  /\  ( ( int `  K ) `
 S )  =  ( o  i^i  Y
) ) )  /\  x  e.  o )  ->  ( x  e.  Y  ->  x  e.  ( ( ( int `  K
) `  S )  u.  ( X  \  Y
) ) ) )
44 elun2 3601 . . . . . . . . . 10  |-  ( x  e.  ( X  \  Y )  ->  x  e.  ( ( ( int `  K ) `  S
)  u.  ( X 
\  Y ) ) )
4544a1i 11 . . . . . . . . 9  |-  ( ( ( ( J  e. 
Top  /\  Y  C_  X  /\  S  C_  Y )  /\  ( o  e.  J  /\  ( ( int `  K ) `
 S )  =  ( o  i^i  Y
) ) )  /\  x  e.  o )  ->  ( x  e.  ( X  \  Y )  ->  x  e.  ( ( ( int `  K
) `  S )  u.  ( X  \  Y
) ) ) )
4643, 45jaod 382 . . . . . . . 8  |-  ( ( ( ( J  e. 
Top  /\  Y  C_  X  /\  S  C_  Y )  /\  ( o  e.  J  /\  ( ( int `  K ) `
 S )  =  ( o  i^i  Y
) ) )  /\  x  e.  o )  ->  ( ( x  e.  Y  \/  x  e.  ( X  \  Y
) )  ->  x  e.  ( ( ( int `  K ) `  S
)  u.  ( X 
\  Y ) ) ) )
4746ex 436 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  ( o  e.  J  /\  ( ( int `  K
) `  S )  =  ( o  i^i 
Y ) ) )  ->  ( x  e.  o  ->  ( (
x  e.  Y  \/  x  e.  ( X  \  Y ) )  ->  x  e.  ( (
( int `  K
) `  S )  u.  ( X  \  Y
) ) ) ) )
4836, 47mpdd 41 . . . . . 6  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  ( o  e.  J  /\  ( ( int `  K
) `  S )  =  ( o  i^i 
Y ) ) )  ->  ( x  e.  o  ->  x  e.  ( ( ( int `  K ) `  S
)  u.  ( X 
\  Y ) ) ) )
4948ssrdv 3437 . . . . 5  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  ( o  e.  J  /\  ( ( int `  K
) `  S )  =  ( o  i^i 
Y ) ) )  ->  o  C_  (
( ( int `  K
) `  S )  u.  ( X  \  Y
) ) )
5011adantr 467 . . . . . . . 8  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  ( o  e.  J  /\  ( ( int `  K
) `  S )  =  ( o  i^i 
Y ) ) )  ->  ( Jt  Y )  e.  Top )
511, 50syl5eqel 2532 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  ( o  e.  J  /\  ( ( int `  K
) `  S )  =  ( o  i^i 
Y ) ) )  ->  K  e.  Top )
5214adantr 467 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  ( o  e.  J  /\  ( ( int `  K
) `  S )  =  ( o  i^i 
Y ) ) )  ->  S  C_  U. ( Jt  Y ) )
531unieqi 4206 . . . . . . . . 9  |-  U. K  =  U. ( Jt  Y )
5453eqcomi 2459 . . . . . . . 8  |-  U. ( Jt  Y )  =  U. K
5554ntrss2 20065 . . . . . . 7  |-  ( ( K  e.  Top  /\  S  C_  U. ( Jt  Y ) )  ->  (
( int `  K
) `  S )  C_  S )
5651, 52, 55syl2anc 666 . . . . . 6  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  ( o  e.  J  /\  ( ( int `  K
) `  S )  =  ( o  i^i 
Y ) ) )  ->  ( ( int `  K ) `  S
)  C_  S )
57 unss1 3602 . . . . . 6  |-  ( ( ( int `  K
) `  S )  C_  S  ->  ( (
( int `  K
) `  S )  u.  ( X  \  Y
) )  C_  ( S  u.  ( X  \  Y ) ) )
5856, 57syl 17 . . . . 5  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  ( o  e.  J  /\  ( ( int `  K
) `  S )  =  ( o  i^i 
Y ) ) )  ->  ( ( ( int `  K ) `
 S )  u.  ( X  \  Y
) )  C_  ( S  u.  ( X  \  Y ) ) )
5949, 58sstrd 3441 . . . 4  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  ( o  e.  J  /\  ( ( int `  K
) `  S )  =  ( o  i^i 
Y ) ) )  ->  o  C_  ( S  u.  ( X  \  Y ) ) )
60 simpl1 1010 . . . . . . . . . 10  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  ( o  e.  J  /\  o  C_  ( S  u.  ( X  \  Y ) ) ) )  ->  J  e.  Top )
61 sstr 3439 . . . . . . . . . . . . . . 15  |-  ( ( S  C_  Y  /\  Y  C_  X )  ->  S  C_  X )
6261ancoms 455 . . . . . . . . . . . . . 14  |-  ( ( Y  C_  X  /\  S  C_  Y )  ->  S  C_  X )
63623adant1 1025 . . . . . . . . . . . . 13  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  S  C_  X )
6463adantr 467 . . . . . . . . . . . 12  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  ( o  e.  J  /\  o  C_  ( S  u.  ( X  \  Y ) ) ) )  ->  S  C_  X
)
65 difss 3559 . . . . . . . . . . . 12  |-  ( X 
\  Y )  C_  X
6664, 65jctir 541 . . . . . . . . . . 11  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  ( o  e.  J  /\  o  C_  ( S  u.  ( X  \  Y ) ) ) )  ->  ( S  C_  X  /\  ( X 
\  Y )  C_  X ) )
67 unss 3607 . . . . . . . . . . 11  |-  ( ( S  C_  X  /\  ( X  \  Y ) 
C_  X )  <->  ( S  u.  ( X  \  Y
) )  C_  X
)
6866, 67sylib 200 . . . . . . . . . 10  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  ( o  e.  J  /\  o  C_  ( S  u.  ( X  \  Y ) ) ) )  ->  ( S  u.  ( X  \  Y
) )  C_  X
)
69 simprl 763 . . . . . . . . . 10  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  ( o  e.  J  /\  o  C_  ( S  u.  ( X  \  Y ) ) ) )  ->  o  e.  J )
70 simprr 765 . . . . . . . . . 10  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  ( o  e.  J  /\  o  C_  ( S  u.  ( X  \  Y ) ) ) )  ->  o  C_  ( S  u.  ( X  \  Y ) ) )
714ssntr 20066 . . . . . . . . . 10  |-  ( ( ( J  e.  Top  /\  ( S  u.  ( X  \  Y ) ) 
C_  X )  /\  ( o  e.  J  /\  o  C_  ( S  u.  ( X  \  Y ) ) ) )  ->  o  C_  ( ( int `  J
) `  ( S  u.  ( X  \  Y
) ) ) )
7260, 68, 69, 70, 71syl22anc 1268 . . . . . . . . 9  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  ( o  e.  J  /\  o  C_  ( S  u.  ( X  \  Y ) ) ) )  ->  o  C_  ( ( int `  J
) `  ( S  u.  ( X  \  Y
) ) ) )
73 ssrin 3656 . . . . . . . . 9  |-  ( o 
C_  ( ( int `  J ) `  ( S  u.  ( X  \  Y ) ) )  ->  ( o  i^i 
Y )  C_  (
( ( int `  J
) `  ( S  u.  ( X  \  Y
) ) )  i^i 
Y ) )
7472, 73syl 17 . . . . . . . 8  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  ( o  e.  J  /\  o  C_  ( S  u.  ( X  \  Y ) ) ) )  ->  ( o  i^i  Y )  C_  (
( ( int `  J
) `  ( S  u.  ( X  \  Y
) ) )  i^i 
Y ) )
75 sseq1 3452 . . . . . . . 8  |-  ( ( ( int `  K
) `  S )  =  ( o  i^i 
Y )  ->  (
( ( int `  K
) `  S )  C_  ( ( ( int `  J ) `  ( S  u.  ( X  \  Y ) ) )  i^i  Y )  <->  ( o  i^i  Y )  C_  (
( ( int `  J
) `  ( S  u.  ( X  \  Y
) ) )  i^i 
Y ) ) )
7674, 75syl5ibrcom 226 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  ( o  e.  J  /\  o  C_  ( S  u.  ( X  \  Y ) ) ) )  ->  ( (
( int `  K
) `  S )  =  ( o  i^i 
Y )  ->  (
( int `  K
) `  S )  C_  ( ( ( int `  J ) `  ( S  u.  ( X  \  Y ) ) )  i^i  Y ) ) )
7776expr 619 . . . . . 6  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  o  e.  J )  ->  ( o  C_  ( S  u.  ( X  \  Y ) )  -> 
( ( ( int `  K ) `  S
)  =  ( o  i^i  Y )  -> 
( ( int `  K
) `  S )  C_  ( ( ( int `  J ) `  ( S  u.  ( X  \  Y ) ) )  i^i  Y ) ) ) )
7877com23 81 . . . . 5  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  o  e.  J )  ->  ( ( ( int `  K ) `  S
)  =  ( o  i^i  Y )  -> 
( o  C_  ( S  u.  ( X  \  Y ) )  -> 
( ( int `  K
) `  S )  C_  ( ( ( int `  J ) `  ( S  u.  ( X  \  Y ) ) )  i^i  Y ) ) ) )
7978impr 624 . . . 4  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  ( o  e.  J  /\  ( ( int `  K
) `  S )  =  ( o  i^i 
Y ) ) )  ->  ( o  C_  ( S  u.  ( X  \  Y ) )  ->  ( ( int `  K ) `  S
)  C_  ( (
( int `  J
) `  ( S  u.  ( X  \  Y
) ) )  i^i 
Y ) ) )
8059, 79mpd 15 . . 3  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  ( o  e.  J  /\  ( ( int `  K
) `  S )  =  ( o  i^i 
Y ) ) )  ->  ( ( int `  K ) `  S
)  C_  ( (
( int `  J
) `  ( S  u.  ( X  \  Y
) ) )  i^i 
Y ) )
8128, 80rexlimddv 2882 . 2  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  (
( int `  K
) `  S )  C_  ( ( ( int `  J ) `  ( S  u.  ( X  \  Y ) ) )  i^i  Y ) )
821, 11syl5eqel 2532 . . 3  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  K  e.  Top )
8383adant3 1027 . . . . 5  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  Y  e.  _V )
8463, 65jctir 541 . . . . . . 7  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  ( S  C_  X  /\  ( X  \  Y )  C_  X ) )
8584, 67sylib 200 . . . . . 6  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  ( S  u.  ( X  \  Y ) )  C_  X )
864ntropn 20057 . . . . . 6  |-  ( ( J  e.  Top  /\  ( S  u.  ( X  \  Y ) ) 
C_  X )  -> 
( ( int `  J
) `  ( S  u.  ( X  \  Y
) ) )  e.  J )
8719, 85, 86syl2anc 666 . . . . 5  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  (
( int `  J
) `  ( S  u.  ( X  \  Y
) ) )  e.  J )
88 elrestr 15320 . . . . 5  |-  ( ( J  e.  Top  /\  Y  e.  _V  /\  (
( int `  J
) `  ( S  u.  ( X  \  Y
) ) )  e.  J )  ->  (
( ( int `  J
) `  ( S  u.  ( X  \  Y
) ) )  i^i 
Y )  e.  ( Jt  Y ) )
8919, 83, 87, 88syl3anc 1267 . . . 4  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  (
( ( int `  J
) `  ( S  u.  ( X  \  Y
) ) )  i^i 
Y )  e.  ( Jt  Y ) )
9089, 1syl6eleqr 2539 . . 3  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  (
( ( int `  J
) `  ( S  u.  ( X  \  Y
) ) )  i^i 
Y )  e.  K
)
914ntrss2 20065 . . . . . 6  |-  ( ( J  e.  Top  /\  ( S  u.  ( X  \  Y ) ) 
C_  X )  -> 
( ( int `  J
) `  ( S  u.  ( X  \  Y
) ) )  C_  ( S  u.  ( X  \  Y ) ) )
9219, 85, 91syl2anc 666 . . . . 5  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  (
( int `  J
) `  ( S  u.  ( X  \  Y
) ) )  C_  ( S  u.  ( X  \  Y ) ) )
93 ssrin 3656 . . . . 5  |-  ( ( ( int `  J
) `  ( S  u.  ( X  \  Y
) ) )  C_  ( S  u.  ( X  \  Y ) )  ->  ( ( ( int `  J ) `
 ( S  u.  ( X  \  Y ) ) )  i^i  Y
)  C_  ( ( S  u.  ( X  \  Y ) )  i^i 
Y ) )
9492, 93syl 17 . . . 4  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  (
( ( int `  J
) `  ( S  u.  ( X  \  Y
) ) )  i^i 
Y )  C_  (
( S  u.  ( X  \  Y ) )  i^i  Y ) )
95 elin 3616 . . . . . . 7  |-  ( x  e.  ( ( S  u.  ( X  \  Y ) )  i^i 
Y )  <->  ( x  e.  ( S  u.  ( X  \  Y ) )  /\  x  e.  Y
) )
96 elun 3573 . . . . . . . . 9  |-  ( x  e.  ( S  u.  ( X  \  Y ) )  <->  ( x  e.  S  \/  x  e.  ( X  \  Y
) ) )
97 orcom 389 . . . . . . . . . 10  |-  ( ( x  e.  S  \/  x  e.  ( X  \  Y ) )  <->  ( x  e.  ( X  \  Y
)  \/  x  e.  S ) )
98 df-or 372 . . . . . . . . . 10  |-  ( ( x  e.  ( X 
\  Y )  \/  x  e.  S )  <-> 
( -.  x  e.  ( X  \  Y
)  ->  x  e.  S ) )
9997, 98bitri 253 . . . . . . . . 9  |-  ( ( x  e.  S  \/  x  e.  ( X  \  Y ) )  <->  ( -.  x  e.  ( X  \  Y )  ->  x  e.  S ) )
10096, 99bitri 253 . . . . . . . 8  |-  ( x  e.  ( S  u.  ( X  \  Y ) )  <->  ( -.  x  e.  ( X  \  Y
)  ->  x  e.  S ) )
101100anbi1i 700 . . . . . . 7  |-  ( ( x  e.  ( S  u.  ( X  \  Y ) )  /\  x  e.  Y )  <->  ( ( -.  x  e.  ( X  \  Y
)  ->  x  e.  S )  /\  x  e.  Y ) )
10295, 101bitri 253 . . . . . 6  |-  ( x  e.  ( ( S  u.  ( X  \  Y ) )  i^i 
Y )  <->  ( ( -.  x  e.  ( X  \  Y )  ->  x  e.  S )  /\  x  e.  Y
) )
103 elndif 3556 . . . . . . . . 9  |-  ( x  e.  Y  ->  -.  x  e.  ( X  \  Y ) )
104 pm2.27 40 . . . . . . . . 9  |-  ( -.  x  e.  ( X 
\  Y )  -> 
( ( -.  x  e.  ( X  \  Y
)  ->  x  e.  S )  ->  x  e.  S ) )
105103, 104syl 17 . . . . . . . 8  |-  ( x  e.  Y  ->  (
( -.  x  e.  ( X  \  Y
)  ->  x  e.  S )  ->  x  e.  S ) )
106105impcom 432 . . . . . . 7  |-  ( ( ( -.  x  e.  ( X  \  Y
)  ->  x  e.  S )  /\  x  e.  Y )  ->  x  e.  S )
107106a1i 11 . . . . . 6  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  (
( ( -.  x  e.  ( X  \  Y
)  ->  x  e.  S )  /\  x  e.  Y )  ->  x  e.  S ) )
108102, 107syl5bi 221 . . . . 5  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  (
x  e.  ( ( S  u.  ( X 
\  Y ) )  i^i  Y )  ->  x  e.  S )
)
109108ssrdv 3437 . . . 4  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  (
( S  u.  ( X  \  Y ) )  i^i  Y )  C_  S )
11094, 109sstrd 3441 . . 3  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  (
( ( int `  J
) `  ( S  u.  ( X  \  Y
) ) )  i^i 
Y )  C_  S
)
11154ssntr 20066 . . 3  |-  ( ( ( K  e.  Top  /\  S  C_  U. ( Jt  Y ) )  /\  ( ( ( ( int `  J ) `
 ( S  u.  ( X  \  Y ) ) )  i^i  Y
)  e.  K  /\  ( ( ( int `  J ) `  ( S  u.  ( X  \  Y ) ) )  i^i  Y )  C_  S ) )  -> 
( ( ( int `  J ) `  ( S  u.  ( X  \  Y ) ) )  i^i  Y )  C_  ( ( int `  K
) `  S )
)
11282, 14, 90, 110, 111syl22anc 1268 . 2  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  (
( ( int `  J
) `  ( S  u.  ( X  \  Y
) ) )  i^i 
Y )  C_  (
( int `  K
) `  S )
)
11381, 112eqssd 3448 1  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  (
( int `  K
) `  S )  =  ( ( ( int `  J ) `
 ( S  u.  ( X  \  Y ) ) )  i^i  Y
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 188    \/ wo 370    /\ wa 371    /\ w3a 984    = wceq 1443    e. wcel 1886   E.wrex 2737   _Vcvv 3044    \ cdif 3400    u. cun 3401    i^i cin 3402    C_ wss 3403   U.cuni 4197   ` cfv 5581  (class class class)co 6288   ↾t crest 15312   Topctop 19910   intcnt 20025
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1668  ax-4 1681  ax-5 1757  ax-6 1804  ax-7 1850  ax-8 1888  ax-9 1895  ax-10 1914  ax-11 1919  ax-12 1932  ax-13 2090  ax-ext 2430  ax-rep 4514  ax-sep 4524  ax-nul 4533  ax-pow 4580  ax-pr 4638  ax-un 6580
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 985  df-3an 986  df-tru 1446  df-ex 1663  df-nf 1667  df-sb 1797  df-eu 2302  df-mo 2303  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2580  df-ne 2623  df-ral 2741  df-rex 2742  df-reu 2743  df-rab 2745  df-v 3046  df-sbc 3267  df-csb 3363  df-dif 3406  df-un 3408  df-in 3410  df-ss 3417  df-pss 3419  df-nul 3731  df-if 3881  df-pw 3952  df-sn 3968  df-pr 3970  df-tp 3972  df-op 3974  df-uni 4198  df-int 4234  df-iun 4279  df-br 4402  df-opab 4461  df-mpt 4462  df-tr 4497  df-eprel 4744  df-id 4748  df-po 4754  df-so 4755  df-fr 4792  df-we 4794  df-xp 4839  df-rel 4840  df-cnv 4841  df-co 4842  df-dm 4843  df-rn 4844  df-res 4845  df-ima 4846  df-pred 5379  df-ord 5425  df-on 5426  df-lim 5427  df-suc 5428  df-iota 5545  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586  df-fo 5587  df-f1o 5588  df-fv 5589  df-ov 6291  df-oprab 6292  df-mpt2 6293  df-om 6690  df-1st 6790  df-2nd 6791  df-wrecs 7025  df-recs 7087  df-rdg 7125  df-oadd 7183  df-er 7360  df-en 7567  df-fin 7570  df-fi 7922  df-rest 15314  df-topgen 15335  df-top 19914  df-bases 19915  df-topon 19916  df-ntr 20028
This theorem is referenced by:  llycmpkgen2  20558  dvreslem  22857  dvres2lem  22858  dvaddbr  22885  dvmulbr  22886  dvcnvrelem2  22963  limciccioolb  37695  limcicciooub  37711  ioccncflimc  37757  icocncflimc  37761  cncfiooicclem1  37765  fourierdlem62  38026
  Copyright terms: Public domain W3C validator