MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvreslem Structured version   Visualization version   GIF version

Theorem dvreslem 23479
Description: Lemma for dvres 23481. (Contributed by Mario Carneiro, 8-Aug-2014.) (Revised by Mario Carneiro, 28-Dec-2016.)
Hypotheses
Ref Expression
dvres.k 𝐾 = (TopOpen‘ℂfld)
dvres.t 𝑇 = (𝐾t 𝑆)
dvres.g 𝐺 = (𝑧 ∈ (𝐴 ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)))
dvres.s (𝜑𝑆 ⊆ ℂ)
dvres.f (𝜑𝐹:𝐴⟶ℂ)
dvres.a (𝜑𝐴𝑆)
dvres.b (𝜑𝐵𝑆)
dvres.y (𝜑𝑦 ∈ ℂ)
Assertion
Ref Expression
dvreslem (𝜑 → (𝑥(𝑆 D (𝐹𝐵))𝑦 ↔ (𝑥(𝑆 D 𝐹)𝑦𝑥 ∈ ((int‘𝑇)‘𝐵))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐹,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝑥,𝑇,𝑦,𝑧   𝑧,𝐾   𝜑,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐺(𝑥,𝑦,𝑧)   𝐾(𝑥,𝑦)

Proof of Theorem dvreslem
StepHypRef Expression
1 difss 3699 . . . . . . . . . . . . . . 15 ((𝐴𝐵) ∖ {𝑥}) ⊆ (𝐴𝐵)
2 inss2 3796 . . . . . . . . . . . . . . 15 (𝐴𝐵) ⊆ 𝐵
31, 2sstri 3577 . . . . . . . . . . . . . 14 ((𝐴𝐵) ∖ {𝑥}) ⊆ 𝐵
4 simpr 476 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) ∧ 𝑧 ∈ ((𝐴𝐵) ∖ {𝑥})) → 𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}))
53, 4sseldi 3566 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) ∧ 𝑧 ∈ ((𝐴𝐵) ∖ {𝑥})) → 𝑧𝐵)
6 fvres 6117 . . . . . . . . . . . . 13 (𝑧𝐵 → ((𝐹𝐵)‘𝑧) = (𝐹𝑧))
75, 6syl 17 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) ∧ 𝑧 ∈ ((𝐴𝐵) ∖ {𝑥})) → ((𝐹𝐵)‘𝑧) = (𝐹𝑧))
8 dvres.t . . . . . . . . . . . . . . . . . 18 𝑇 = (𝐾t 𝑆)
9 dvres.k . . . . . . . . . . . . . . . . . . . 20 𝐾 = (TopOpen‘ℂfld)
109cnfldtop 22397 . . . . . . . . . . . . . . . . . . 19 𝐾 ∈ Top
11 dvres.s . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑆 ⊆ ℂ)
12 cnex 9896 . . . . . . . . . . . . . . . . . . . 20 ℂ ∈ V
13 ssexg 4732 . . . . . . . . . . . . . . . . . . . 20 ((𝑆 ⊆ ℂ ∧ ℂ ∈ V) → 𝑆 ∈ V)
1411, 12, 13sylancl 693 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑆 ∈ V)
15 resttop 20774 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ Top ∧ 𝑆 ∈ V) → (𝐾t 𝑆) ∈ Top)
1610, 14, 15sylancr 694 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐾t 𝑆) ∈ Top)
178, 16syl5eqel 2692 . . . . . . . . . . . . . . . . 17 (𝜑𝑇 ∈ Top)
18 inss1 3795 . . . . . . . . . . . . . . . . . . 19 (𝐴𝐵) ⊆ 𝐴
19 dvres.a . . . . . . . . . . . . . . . . . . 19 (𝜑𝐴𝑆)
2018, 19syl5ss 3579 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐴𝐵) ⊆ 𝑆)
219cnfldtopon 22396 . . . . . . . . . . . . . . . . . . . . 21 𝐾 ∈ (TopOn‘ℂ)
22 resttopon 20775 . . . . . . . . . . . . . . . . . . . . 21 ((𝐾 ∈ (TopOn‘ℂ) ∧ 𝑆 ⊆ ℂ) → (𝐾t 𝑆) ∈ (TopOn‘𝑆))
2321, 11, 22sylancr 694 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐾t 𝑆) ∈ (TopOn‘𝑆))
248, 23syl5eqel 2692 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑇 ∈ (TopOn‘𝑆))
25 toponuni 20542 . . . . . . . . . . . . . . . . . . 19 (𝑇 ∈ (TopOn‘𝑆) → 𝑆 = 𝑇)
2624, 25syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑𝑆 = 𝑇)
2720, 26sseqtrd 3604 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐴𝐵) ⊆ 𝑇)
28 eqid 2610 . . . . . . . . . . . . . . . . . 18 𝑇 = 𝑇
2928ntrss2 20671 . . . . . . . . . . . . . . . . 17 ((𝑇 ∈ Top ∧ (𝐴𝐵) ⊆ 𝑇) → ((int‘𝑇)‘(𝐴𝐵)) ⊆ (𝐴𝐵))
3017, 27, 29syl2anc 691 . . . . . . . . . . . . . . . 16 (𝜑 → ((int‘𝑇)‘(𝐴𝐵)) ⊆ (𝐴𝐵))
3130, 2syl6ss 3580 . . . . . . . . . . . . . . 15 (𝜑 → ((int‘𝑇)‘(𝐴𝐵)) ⊆ 𝐵)
3231sselda 3568 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → 𝑥𝐵)
33 fvres 6117 . . . . . . . . . . . . . 14 (𝑥𝐵 → ((𝐹𝐵)‘𝑥) = (𝐹𝑥))
3432, 33syl 17 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → ((𝐹𝐵)‘𝑥) = (𝐹𝑥))
3534adantr 480 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) ∧ 𝑧 ∈ ((𝐴𝐵) ∖ {𝑥})) → ((𝐹𝐵)‘𝑥) = (𝐹𝑥))
367, 35oveq12d 6567 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) ∧ 𝑧 ∈ ((𝐴𝐵) ∖ {𝑥})) → (((𝐹𝐵)‘𝑧) − ((𝐹𝐵)‘𝑥)) = ((𝐹𝑧) − (𝐹𝑥)))
3736oveq1d 6564 . . . . . . . . . 10 (((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) ∧ 𝑧 ∈ ((𝐴𝐵) ∖ {𝑥})) → ((((𝐹𝐵)‘𝑧) − ((𝐹𝐵)‘𝑥)) / (𝑧𝑥)) = (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)))
3837mpteq2dva 4672 . . . . . . . . 9 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → (𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ ((((𝐹𝐵)‘𝑧) − ((𝐹𝐵)‘𝑥)) / (𝑧𝑥))) = (𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))))
39 dvres.g . . . . . . . . . . 11 𝐺 = (𝑧 ∈ (𝐴 ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)))
4039reseq1i 5313 . . . . . . . . . 10 (𝐺 ↾ ((𝐴𝐵) ∖ {𝑥})) = ((𝑧 ∈ (𝐴 ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) ↾ ((𝐴𝐵) ∖ {𝑥}))
41 ssdif 3707 . . . . . . . . . . 11 ((𝐴𝐵) ⊆ 𝐴 → ((𝐴𝐵) ∖ {𝑥}) ⊆ (𝐴 ∖ {𝑥}))
42 resmpt 5369 . . . . . . . . . . 11 (((𝐴𝐵) ∖ {𝑥}) ⊆ (𝐴 ∖ {𝑥}) → ((𝑧 ∈ (𝐴 ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) ↾ ((𝐴𝐵) ∖ {𝑥})) = (𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))))
4318, 41, 42mp2b 10 . . . . . . . . . 10 ((𝑧 ∈ (𝐴 ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) ↾ ((𝐴𝐵) ∖ {𝑥})) = (𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)))
4440, 43eqtri 2632 . . . . . . . . 9 (𝐺 ↾ ((𝐴𝐵) ∖ {𝑥})) = (𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)))
4538, 44syl6eqr 2662 . . . . . . . 8 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → (𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ ((((𝐹𝐵)‘𝑧) − ((𝐹𝐵)‘𝑥)) / (𝑧𝑥))) = (𝐺 ↾ ((𝐴𝐵) ∖ {𝑥})))
4645oveq1d 6564 . . . . . . 7 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → ((𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ ((((𝐹𝐵)‘𝑧) − ((𝐹𝐵)‘𝑥)) / (𝑧𝑥))) lim 𝑥) = ((𝐺 ↾ ((𝐴𝐵) ∖ {𝑥})) lim 𝑥))
47 dvres.f . . . . . . . . . . 11 (𝜑𝐹:𝐴⟶ℂ)
4847adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → 𝐹:𝐴⟶ℂ)
4919, 11sstrd 3578 . . . . . . . . . . 11 (𝜑𝐴 ⊆ ℂ)
5049adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → 𝐴 ⊆ ℂ)
5130, 18syl6ss 3580 . . . . . . . . . . 11 (𝜑 → ((int‘𝑇)‘(𝐴𝐵)) ⊆ 𝐴)
5251sselda 3568 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → 𝑥𝐴)
5348, 50, 52dvlem 23466 . . . . . . . . 9 (((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) ∧ 𝑧 ∈ (𝐴 ∖ {𝑥})) → (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)) ∈ ℂ)
5453, 39fmptd 6292 . . . . . . . 8 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → 𝐺:(𝐴 ∖ {𝑥})⟶ℂ)
5518, 41mp1i 13 . . . . . . . 8 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → ((𝐴𝐵) ∖ {𝑥}) ⊆ (𝐴 ∖ {𝑥}))
56 difss 3699 . . . . . . . . 9 (𝐴 ∖ {𝑥}) ⊆ 𝐴
5756, 50syl5ss 3579 . . . . . . . 8 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → (𝐴 ∖ {𝑥}) ⊆ ℂ)
58 eqid 2610 . . . . . . . 8 (𝐾t ((𝐴 ∖ {𝑥}) ∪ {𝑥})) = (𝐾t ((𝐴 ∖ {𝑥}) ∪ {𝑥}))
59 difssd 3700 . . . . . . . . . . . . . 14 (𝜑 → ( 𝑇𝐴) ⊆ 𝑇)
6027, 59unssd 3751 . . . . . . . . . . . . 13 (𝜑 → ((𝐴𝐵) ∪ ( 𝑇𝐴)) ⊆ 𝑇)
61 ssun1 3738 . . . . . . . . . . . . . 14 (𝐴𝐵) ⊆ ((𝐴𝐵) ∪ ( 𝑇𝐴))
6261a1i 11 . . . . . . . . . . . . 13 (𝜑 → (𝐴𝐵) ⊆ ((𝐴𝐵) ∪ ( 𝑇𝐴)))
6328ntrss 20669 . . . . . . . . . . . . 13 ((𝑇 ∈ Top ∧ ((𝐴𝐵) ∪ ( 𝑇𝐴)) ⊆ 𝑇 ∧ (𝐴𝐵) ⊆ ((𝐴𝐵) ∪ ( 𝑇𝐴))) → ((int‘𝑇)‘(𝐴𝐵)) ⊆ ((int‘𝑇)‘((𝐴𝐵) ∪ ( 𝑇𝐴))))
6417, 60, 62, 63syl3anc 1318 . . . . . . . . . . . 12 (𝜑 → ((int‘𝑇)‘(𝐴𝐵)) ⊆ ((int‘𝑇)‘((𝐴𝐵) ∪ ( 𝑇𝐴))))
6564, 51ssind 3799 . . . . . . . . . . 11 (𝜑 → ((int‘𝑇)‘(𝐴𝐵)) ⊆ (((int‘𝑇)‘((𝐴𝐵) ∪ ( 𝑇𝐴))) ∩ 𝐴))
6619, 26sseqtrd 3604 . . . . . . . . . . . . 13 (𝜑𝐴 𝑇)
6718a1i 11 . . . . . . . . . . . . 13 (𝜑 → (𝐴𝐵) ⊆ 𝐴)
68 eqid 2610 . . . . . . . . . . . . . 14 (𝑇t 𝐴) = (𝑇t 𝐴)
6928, 68restntr 20796 . . . . . . . . . . . . 13 ((𝑇 ∈ Top ∧ 𝐴 𝑇 ∧ (𝐴𝐵) ⊆ 𝐴) → ((int‘(𝑇t 𝐴))‘(𝐴𝐵)) = (((int‘𝑇)‘((𝐴𝐵) ∪ ( 𝑇𝐴))) ∩ 𝐴))
7017, 66, 67, 69syl3anc 1318 . . . . . . . . . . . 12 (𝜑 → ((int‘(𝑇t 𝐴))‘(𝐴𝐵)) = (((int‘𝑇)‘((𝐴𝐵) ∪ ( 𝑇𝐴))) ∩ 𝐴))
718oveq1i 6559 . . . . . . . . . . . . . . 15 (𝑇t 𝐴) = ((𝐾t 𝑆) ↾t 𝐴)
7210a1i 11 . . . . . . . . . . . . . . . 16 (𝜑𝐾 ∈ Top)
73 restabs 20779 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ Top ∧ 𝐴𝑆𝑆 ∈ V) → ((𝐾t 𝑆) ↾t 𝐴) = (𝐾t 𝐴))
7472, 19, 14, 73syl3anc 1318 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐾t 𝑆) ↾t 𝐴) = (𝐾t 𝐴))
7571, 74syl5eq 2656 . . . . . . . . . . . . . 14 (𝜑 → (𝑇t 𝐴) = (𝐾t 𝐴))
7675fveq2d 6107 . . . . . . . . . . . . 13 (𝜑 → (int‘(𝑇t 𝐴)) = (int‘(𝐾t 𝐴)))
7776fveq1d 6105 . . . . . . . . . . . 12 (𝜑 → ((int‘(𝑇t 𝐴))‘(𝐴𝐵)) = ((int‘(𝐾t 𝐴))‘(𝐴𝐵)))
7870, 77eqtr3d 2646 . . . . . . . . . . 11 (𝜑 → (((int‘𝑇)‘((𝐴𝐵) ∪ ( 𝑇𝐴))) ∩ 𝐴) = ((int‘(𝐾t 𝐴))‘(𝐴𝐵)))
7965, 78sseqtrd 3604 . . . . . . . . . 10 (𝜑 → ((int‘𝑇)‘(𝐴𝐵)) ⊆ ((int‘(𝐾t 𝐴))‘(𝐴𝐵)))
8079sselda 3568 . . . . . . . . 9 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → 𝑥 ∈ ((int‘(𝐾t 𝐴))‘(𝐴𝐵)))
81 undif1 3995 . . . . . . . . . . . . 13 ((𝐴 ∖ {𝑥}) ∪ {𝑥}) = (𝐴 ∪ {𝑥})
8230sselda 3568 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → 𝑥 ∈ (𝐴𝐵))
8382snssd 4281 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → {𝑥} ⊆ (𝐴𝐵))
8483, 18syl6ss 3580 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → {𝑥} ⊆ 𝐴)
85 ssequn2 3748 . . . . . . . . . . . . . 14 ({𝑥} ⊆ 𝐴 ↔ (𝐴 ∪ {𝑥}) = 𝐴)
8684, 85sylib 207 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → (𝐴 ∪ {𝑥}) = 𝐴)
8781, 86syl5eq 2656 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → ((𝐴 ∖ {𝑥}) ∪ {𝑥}) = 𝐴)
8887oveq2d 6565 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → (𝐾t ((𝐴 ∖ {𝑥}) ∪ {𝑥})) = (𝐾t 𝐴))
8988fveq2d 6107 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → (int‘(𝐾t ((𝐴 ∖ {𝑥}) ∪ {𝑥}))) = (int‘(𝐾t 𝐴)))
90 undif1 3995 . . . . . . . . . . 11 (((𝐴𝐵) ∖ {𝑥}) ∪ {𝑥}) = ((𝐴𝐵) ∪ {𝑥})
91 ssequn2 3748 . . . . . . . . . . . 12 ({𝑥} ⊆ (𝐴𝐵) ↔ ((𝐴𝐵) ∪ {𝑥}) = (𝐴𝐵))
9283, 91sylib 207 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → ((𝐴𝐵) ∪ {𝑥}) = (𝐴𝐵))
9390, 92syl5eq 2656 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → (((𝐴𝐵) ∖ {𝑥}) ∪ {𝑥}) = (𝐴𝐵))
9489, 93fveq12d 6109 . . . . . . . . 9 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → ((int‘(𝐾t ((𝐴 ∖ {𝑥}) ∪ {𝑥})))‘(((𝐴𝐵) ∖ {𝑥}) ∪ {𝑥})) = ((int‘(𝐾t 𝐴))‘(𝐴𝐵)))
9580, 94eleqtrrd 2691 . . . . . . . 8 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → 𝑥 ∈ ((int‘(𝐾t ((𝐴 ∖ {𝑥}) ∪ {𝑥})))‘(((𝐴𝐵) ∖ {𝑥}) ∪ {𝑥})))
9654, 55, 57, 9, 58, 95limcres 23456 . . . . . . 7 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → ((𝐺 ↾ ((𝐴𝐵) ∖ {𝑥})) lim 𝑥) = (𝐺 lim 𝑥))
9746, 96eqtrd 2644 . . . . . 6 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → ((𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ ((((𝐹𝐵)‘𝑧) − ((𝐹𝐵)‘𝑥)) / (𝑧𝑥))) lim 𝑥) = (𝐺 lim 𝑥))
9897eleq2d 2673 . . . . 5 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → (𝑦 ∈ ((𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ ((((𝐹𝐵)‘𝑧) − ((𝐹𝐵)‘𝑥)) / (𝑧𝑥))) lim 𝑥) ↔ 𝑦 ∈ (𝐺 lim 𝑥)))
9998pm5.32da 671 . . . 4 (𝜑 → ((𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵)) ∧ 𝑦 ∈ ((𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ ((((𝐹𝐵)‘𝑧) − ((𝐹𝐵)‘𝑥)) / (𝑧𝑥))) lim 𝑥)) ↔ (𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵)) ∧ 𝑦 ∈ (𝐺 lim 𝑥))))
100 dvres.b . . . . . . . . 9 (𝜑𝐵𝑆)
101100, 26sseqtrd 3604 . . . . . . . 8 (𝜑𝐵 𝑇)
10228ntrin 20675 . . . . . . . 8 ((𝑇 ∈ Top ∧ 𝐴 𝑇𝐵 𝑇) → ((int‘𝑇)‘(𝐴𝐵)) = (((int‘𝑇)‘𝐴) ∩ ((int‘𝑇)‘𝐵)))
10317, 66, 101, 102syl3anc 1318 . . . . . . 7 (𝜑 → ((int‘𝑇)‘(𝐴𝐵)) = (((int‘𝑇)‘𝐴) ∩ ((int‘𝑇)‘𝐵)))
104103eleq2d 2673 . . . . . 6 (𝜑 → (𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵)) ↔ 𝑥 ∈ (((int‘𝑇)‘𝐴) ∩ ((int‘𝑇)‘𝐵))))
105 elin 3758 . . . . . 6 (𝑥 ∈ (((int‘𝑇)‘𝐴) ∩ ((int‘𝑇)‘𝐵)) ↔ (𝑥 ∈ ((int‘𝑇)‘𝐴) ∧ 𝑥 ∈ ((int‘𝑇)‘𝐵)))
106104, 105syl6bb 275 . . . . 5 (𝜑 → (𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵)) ↔ (𝑥 ∈ ((int‘𝑇)‘𝐴) ∧ 𝑥 ∈ ((int‘𝑇)‘𝐵))))
107106anbi1d 737 . . . 4 (𝜑 → ((𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵)) ∧ 𝑦 ∈ (𝐺 lim 𝑥)) ↔ ((𝑥 ∈ ((int‘𝑇)‘𝐴) ∧ 𝑥 ∈ ((int‘𝑇)‘𝐵)) ∧ 𝑦 ∈ (𝐺 lim 𝑥))))
10899, 107bitrd 267 . . 3 (𝜑 → ((𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵)) ∧ 𝑦 ∈ ((𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ ((((𝐹𝐵)‘𝑧) − ((𝐹𝐵)‘𝑥)) / (𝑧𝑥))) lim 𝑥)) ↔ ((𝑥 ∈ ((int‘𝑇)‘𝐴) ∧ 𝑥 ∈ ((int‘𝑇)‘𝐵)) ∧ 𝑦 ∈ (𝐺 lim 𝑥))))
109 an32 835 . . 3 (((𝑥 ∈ ((int‘𝑇)‘𝐴) ∧ 𝑥 ∈ ((int‘𝑇)‘𝐵)) ∧ 𝑦 ∈ (𝐺 lim 𝑥)) ↔ ((𝑥 ∈ ((int‘𝑇)‘𝐴) ∧ 𝑦 ∈ (𝐺 lim 𝑥)) ∧ 𝑥 ∈ ((int‘𝑇)‘𝐵)))
110108, 109syl6bb 275 . 2 (𝜑 → ((𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵)) ∧ 𝑦 ∈ ((𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ ((((𝐹𝐵)‘𝑧) − ((𝐹𝐵)‘𝑥)) / (𝑧𝑥))) lim 𝑥)) ↔ ((𝑥 ∈ ((int‘𝑇)‘𝐴) ∧ 𝑦 ∈ (𝐺 lim 𝑥)) ∧ 𝑥 ∈ ((int‘𝑇)‘𝐵))))
111 eqid 2610 . . 3 (𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ ((((𝐹𝐵)‘𝑧) − ((𝐹𝐵)‘𝑥)) / (𝑧𝑥))) = (𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ ((((𝐹𝐵)‘𝑧) − ((𝐹𝐵)‘𝑥)) / (𝑧𝑥)))
112 fresin 5986 . . . 4 (𝐹:𝐴⟶ℂ → (𝐹𝐵):(𝐴𝐵)⟶ℂ)
11347, 112syl 17 . . 3 (𝜑 → (𝐹𝐵):(𝐴𝐵)⟶ℂ)
1148, 9, 111, 11, 113, 20eldv 23468 . 2 (𝜑 → (𝑥(𝑆 D (𝐹𝐵))𝑦 ↔ (𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵)) ∧ 𝑦 ∈ ((𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ ((((𝐹𝐵)‘𝑧) − ((𝐹𝐵)‘𝑥)) / (𝑧𝑥))) lim 𝑥))))
1158, 9, 39, 11, 47, 19eldv 23468 . . 3 (𝜑 → (𝑥(𝑆 D 𝐹)𝑦 ↔ (𝑥 ∈ ((int‘𝑇)‘𝐴) ∧ 𝑦 ∈ (𝐺 lim 𝑥))))
116115anbi1d 737 . 2 (𝜑 → ((𝑥(𝑆 D 𝐹)𝑦𝑥 ∈ ((int‘𝑇)‘𝐵)) ↔ ((𝑥 ∈ ((int‘𝑇)‘𝐴) ∧ 𝑦 ∈ (𝐺 lim 𝑥)) ∧ 𝑥 ∈ ((int‘𝑇)‘𝐵))))
117110, 114, 1163bitr4d 299 1 (𝜑 → (𝑥(𝑆 D (𝐹𝐵))𝑦 ↔ (𝑥(𝑆 D 𝐹)𝑦𝑥 ∈ ((int‘𝑇)‘𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  Vcvv 3173  cdif 3537  cun 3538  cin 3539  wss 3540  {csn 4125   cuni 4372   class class class wbr 4583  cmpt 4643  cres 5040  wf 5800  cfv 5804  (class class class)co 6549  cc 9813  cmin 10145   / cdiv 10563  t crest 15904  TopOpenctopn 15905  fldccnfld 19567  Topctop 20517  TopOnctopon 20518  intcnt 20631   lim climc 23432   D cdv 23433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fi 8200  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-fz 12198  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-plusg 15781  df-mulr 15782  df-starv 15783  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-rest 15906  df-topn 15907  df-topgen 15927  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-cnp 20842  df-xms 21935  df-ms 21936  df-limc 23436  df-dv 23437
This theorem is referenced by:  dvres  23481
  Copyright terms: Public domain W3C validator