MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrelbas3 Structured version   Visualization version   GIF version

Theorem dchrelbas3 24763
Description: A Dirichlet character is a monoid homomorphism from the multiplicative monoid on ℤ/n to the multiplicative monoid of , which is zero off the group of units of ℤ/n. (Contributed by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
dchrval.g 𝐺 = (DChr‘𝑁)
dchrval.z 𝑍 = (ℤ/nℤ‘𝑁)
dchrval.b 𝐵 = (Base‘𝑍)
dchrval.u 𝑈 = (Unit‘𝑍)
dchrval.n (𝜑𝑁 ∈ ℕ)
dchrbas.b 𝐷 = (Base‘𝐺)
Assertion
Ref Expression
dchrelbas3 (𝜑 → (𝑋𝐷 ↔ (𝑋:𝐵⟶ℂ ∧ (∀𝑥𝑈𝑦𝑈 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r𝑍)) = 1 ∧ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈)))))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝑁   𝑥,𝑈,𝑦   𝜑,𝑥,𝑦   𝑥,𝑋,𝑦   𝑥,𝑍,𝑦
Allowed substitution hints:   𝐷(𝑥,𝑦)   𝐺(𝑥,𝑦)   𝑁(𝑦)

Proof of Theorem dchrelbas3
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 dchrval.g . . 3 𝐺 = (DChr‘𝑁)
2 dchrval.z . . 3 𝑍 = (ℤ/nℤ‘𝑁)
3 dchrval.b . . 3 𝐵 = (Base‘𝑍)
4 dchrval.u . . 3 𝑈 = (Unit‘𝑍)
5 dchrval.n . . 3 (𝜑𝑁 ∈ ℕ)
6 dchrbas.b . . 3 𝐷 = (Base‘𝐺)
71, 2, 3, 4, 5, 6dchrelbas2 24762 . 2 (𝜑 → (𝑋𝐷 ↔ (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈))))
8 fveq2 6103 . . . . . . . 8 (𝑧 = 𝑥 → (𝑋𝑧) = (𝑋𝑥))
98neeq1d 2841 . . . . . . 7 (𝑧 = 𝑥 → ((𝑋𝑧) ≠ 0 ↔ (𝑋𝑥) ≠ 0))
10 eleq1 2676 . . . . . . 7 (𝑧 = 𝑥 → (𝑧𝑈𝑥𝑈))
119, 10imbi12d 333 . . . . . 6 (𝑧 = 𝑥 → (((𝑋𝑧) ≠ 0 → 𝑧𝑈) ↔ ((𝑋𝑥) ≠ 0 → 𝑥𝑈)))
1211cbvralv 3147 . . . . 5 (∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈) ↔ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈))
135nnnn0d 11228 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℕ0)
142zncrng 19712 . . . . . . . . . . 11 (𝑁 ∈ ℕ0𝑍 ∈ CRing)
1513, 14syl 17 . . . . . . . . . 10 (𝜑𝑍 ∈ CRing)
16 crngring 18381 . . . . . . . . . 10 (𝑍 ∈ CRing → 𝑍 ∈ Ring)
1715, 16syl 17 . . . . . . . . 9 (𝜑𝑍 ∈ Ring)
18 eqid 2610 . . . . . . . . . 10 (mulGrp‘𝑍) = (mulGrp‘𝑍)
1918ringmgp 18376 . . . . . . . . 9 (𝑍 ∈ Ring → (mulGrp‘𝑍) ∈ Mnd)
2017, 19syl 17 . . . . . . . 8 (𝜑 → (mulGrp‘𝑍) ∈ Mnd)
21 cnring 19587 . . . . . . . . 9 fld ∈ Ring
22 eqid 2610 . . . . . . . . . 10 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
2322ringmgp 18376 . . . . . . . . 9 (ℂfld ∈ Ring → (mulGrp‘ℂfld) ∈ Mnd)
2421, 23ax-mp 5 . . . . . . . 8 (mulGrp‘ℂfld) ∈ Mnd
2518, 3mgpbas 18318 . . . . . . . . . 10 𝐵 = (Base‘(mulGrp‘𝑍))
26 cnfldbas 19571 . . . . . . . . . . 11 ℂ = (Base‘ℂfld)
2722, 26mgpbas 18318 . . . . . . . . . 10 ℂ = (Base‘(mulGrp‘ℂfld))
28 eqid 2610 . . . . . . . . . . 11 (.r𝑍) = (.r𝑍)
2918, 28mgpplusg 18316 . . . . . . . . . 10 (.r𝑍) = (+g‘(mulGrp‘𝑍))
30 cnfldmul 19573 . . . . . . . . . . 11 · = (.r‘ℂfld)
3122, 30mgpplusg 18316 . . . . . . . . . 10 · = (+g‘(mulGrp‘ℂfld))
32 eqid 2610 . . . . . . . . . . 11 (1r𝑍) = (1r𝑍)
3318, 32ringidval 18326 . . . . . . . . . 10 (1r𝑍) = (0g‘(mulGrp‘𝑍))
34 cnfld1 19590 . . . . . . . . . . 11 1 = (1r‘ℂfld)
3522, 34ringidval 18326 . . . . . . . . . 10 1 = (0g‘(mulGrp‘ℂfld))
3625, 27, 29, 31, 33, 35ismhm 17160 . . . . . . . . 9 (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ↔ (((mulGrp‘𝑍) ∈ Mnd ∧ (mulGrp‘ℂfld) ∈ Mnd) ∧ (𝑋:𝐵⟶ℂ ∧ ∀𝑥𝐵𝑦𝐵 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r𝑍)) = 1)))
3736baib 942 . . . . . . . 8 (((mulGrp‘𝑍) ∈ Mnd ∧ (mulGrp‘ℂfld) ∈ Mnd) → (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ↔ (𝑋:𝐵⟶ℂ ∧ ∀𝑥𝐵𝑦𝐵 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r𝑍)) = 1)))
3820, 24, 37sylancl 693 . . . . . . 7 (𝜑 → (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ↔ (𝑋:𝐵⟶ℂ ∧ ∀𝑥𝐵𝑦𝐵 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r𝑍)) = 1)))
3938adantr 480 . . . . . 6 ((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) → (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ↔ (𝑋:𝐵⟶ℂ ∧ ∀𝑥𝐵𝑦𝐵 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r𝑍)) = 1)))
40 biimt 349 . . . . . . . . . . . . . . 15 ((𝑥𝑈𝑦𝑈) → ((𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ↔ ((𝑥𝑈𝑦𝑈) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)))))
4140adantl 481 . . . . . . . . . . . . . 14 (((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑥𝑈𝑦𝑈)) → ((𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ↔ ((𝑥𝑈𝑦𝑈) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)))))
4217ad3antrrr 762 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) → 𝑍 ∈ Ring)
43 simprl 790 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) → 𝑥𝐵)
44 simprr 792 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) → 𝑦𝐵)
453, 28ringcl 18384 . . . . . . . . . . . . . . . . . . . . 21 ((𝑍 ∈ Ring ∧ 𝑥𝐵𝑦𝐵) → (𝑥(.r𝑍)𝑦) ∈ 𝐵)
4642, 43, 44, 45syl3anc 1318 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝑍)𝑦) ∈ 𝐵)
47 simpllr 795 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) → ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈))
48 fveq2 6103 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧 = (𝑥(.r𝑍)𝑦) → (𝑋𝑧) = (𝑋‘(𝑥(.r𝑍)𝑦)))
4948neeq1d 2841 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 = (𝑥(.r𝑍)𝑦) → ((𝑋𝑧) ≠ 0 ↔ (𝑋‘(𝑥(.r𝑍)𝑦)) ≠ 0))
50 eleq1 2676 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 = (𝑥(.r𝑍)𝑦) → (𝑧𝑈 ↔ (𝑥(.r𝑍)𝑦) ∈ 𝑈))
5149, 50imbi12d 333 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 = (𝑥(.r𝑍)𝑦) → (((𝑋𝑧) ≠ 0 → 𝑧𝑈) ↔ ((𝑋‘(𝑥(.r𝑍)𝑦)) ≠ 0 → (𝑥(.r𝑍)𝑦) ∈ 𝑈)))
5251rspcv 3278 . . . . . . . . . . . . . . . . . . . 20 ((𝑥(.r𝑍)𝑦) ∈ 𝐵 → (∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈) → ((𝑋‘(𝑥(.r𝑍)𝑦)) ≠ 0 → (𝑥(.r𝑍)𝑦) ∈ 𝑈)))
5346, 47, 52sylc 63 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑋‘(𝑥(.r𝑍)𝑦)) ≠ 0 → (𝑥(.r𝑍)𝑦) ∈ 𝑈))
5415ad3antrrr 762 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) → 𝑍 ∈ CRing)
554, 28, 3unitmulclb 18488 . . . . . . . . . . . . . . . . . . . 20 ((𝑍 ∈ CRing ∧ 𝑥𝐵𝑦𝐵) → ((𝑥(.r𝑍)𝑦) ∈ 𝑈 ↔ (𝑥𝑈𝑦𝑈)))
5654, 43, 44, 55syl3anc 1318 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑥(.r𝑍)𝑦) ∈ 𝑈 ↔ (𝑥𝑈𝑦𝑈)))
5753, 56sylibd 228 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑋‘(𝑥(.r𝑍)𝑦)) ≠ 0 → (𝑥𝑈𝑦𝑈)))
5857necon1bd 2800 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) → (¬ (𝑥𝑈𝑦𝑈) → (𝑋‘(𝑥(.r𝑍)𝑦)) = 0))
5958imp 444 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝑈𝑦𝑈)) → (𝑋‘(𝑥(.r𝑍)𝑦)) = 0)
6011rspcv 3278 . . . . . . . . . . . . . . . . . . . . 21 (𝑥𝐵 → (∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈) → ((𝑋𝑥) ≠ 0 → 𝑥𝑈)))
6143, 47, 60sylc 63 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑋𝑥) ≠ 0 → 𝑥𝑈))
62 fveq2 6103 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧 = 𝑦 → (𝑋𝑧) = (𝑋𝑦))
6362neeq1d 2841 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧 = 𝑦 → ((𝑋𝑧) ≠ 0 ↔ (𝑋𝑦) ≠ 0))
64 eleq1 2676 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧 = 𝑦 → (𝑧𝑈𝑦𝑈))
6563, 64imbi12d 333 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 = 𝑦 → (((𝑋𝑧) ≠ 0 → 𝑧𝑈) ↔ ((𝑋𝑦) ≠ 0 → 𝑦𝑈)))
6665rspcv 3278 . . . . . . . . . . . . . . . . . . . . 21 (𝑦𝐵 → (∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈) → ((𝑋𝑦) ≠ 0 → 𝑦𝑈)))
6744, 47, 66sylc 63 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑋𝑦) ≠ 0 → 𝑦𝑈))
6861, 67anim12d 584 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) → (((𝑋𝑥) ≠ 0 ∧ (𝑋𝑦) ≠ 0) → (𝑥𝑈𝑦𝑈)))
6968con3dimp 456 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝑈𝑦𝑈)) → ¬ ((𝑋𝑥) ≠ 0 ∧ (𝑋𝑦) ≠ 0))
70 neanior 2874 . . . . . . . . . . . . . . . . . . 19 (((𝑋𝑥) ≠ 0 ∧ (𝑋𝑦) ≠ 0) ↔ ¬ ((𝑋𝑥) = 0 ∨ (𝑋𝑦) = 0))
7170con2bii 346 . . . . . . . . . . . . . . . . . 18 (((𝑋𝑥) = 0 ∨ (𝑋𝑦) = 0) ↔ ¬ ((𝑋𝑥) ≠ 0 ∧ (𝑋𝑦) ≠ 0))
7269, 71sylibr 223 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝑈𝑦𝑈)) → ((𝑋𝑥) = 0 ∨ (𝑋𝑦) = 0))
73 simplr 788 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) → 𝑋:𝐵⟶ℂ)
7473, 43ffvelrnd 6268 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) → (𝑋𝑥) ∈ ℂ)
7573, 44ffvelrnd 6268 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) → (𝑋𝑦) ∈ ℂ)
7674, 75mul0ord 10556 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) → (((𝑋𝑥) · (𝑋𝑦)) = 0 ↔ ((𝑋𝑥) = 0 ∨ (𝑋𝑦) = 0)))
7776adantr 480 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝑈𝑦𝑈)) → (((𝑋𝑥) · (𝑋𝑦)) = 0 ↔ ((𝑋𝑥) = 0 ∨ (𝑋𝑦) = 0)))
7872, 77mpbird 246 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝑈𝑦𝑈)) → ((𝑋𝑥) · (𝑋𝑦)) = 0)
7959, 78eqtr4d 2647 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝑈𝑦𝑈)) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)))
8079a1d 25 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝑈𝑦𝑈)) → ((𝑥𝑈𝑦𝑈) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦))))
8179, 802thd 254 . . . . . . . . . . . . . 14 (((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝑈𝑦𝑈)) → ((𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ↔ ((𝑥𝑈𝑦𝑈) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)))))
8241, 81pm2.61dan 828 . . . . . . . . . . . . 13 ((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ↔ ((𝑥𝑈𝑦𝑈) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)))))
8382pm5.74da 719 . . . . . . . . . . . 12 (((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) → (((𝑥𝐵𝑦𝐵) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦))) ↔ ((𝑥𝐵𝑦𝐵) → ((𝑥𝑈𝑦𝑈) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦))))))
843, 4unitcl 18482 . . . . . . . . . . . . . . . 16 (𝑥𝑈𝑥𝐵)
853, 4unitcl 18482 . . . . . . . . . . . . . . . 16 (𝑦𝑈𝑦𝐵)
8684, 85anim12i 588 . . . . . . . . . . . . . . 15 ((𝑥𝑈𝑦𝑈) → (𝑥𝐵𝑦𝐵))
8786pm4.71ri 663 . . . . . . . . . . . . . 14 ((𝑥𝑈𝑦𝑈) ↔ ((𝑥𝐵𝑦𝐵) ∧ (𝑥𝑈𝑦𝑈)))
8887imbi1i 338 . . . . . . . . . . . . 13 (((𝑥𝑈𝑦𝑈) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦))) ↔ (((𝑥𝐵𝑦𝐵) ∧ (𝑥𝑈𝑦𝑈)) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦))))
89 impexp 461 . . . . . . . . . . . . 13 ((((𝑥𝐵𝑦𝐵) ∧ (𝑥𝑈𝑦𝑈)) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦))) ↔ ((𝑥𝐵𝑦𝐵) → ((𝑥𝑈𝑦𝑈) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)))))
9088, 89bitri 263 . . . . . . . . . . . 12 (((𝑥𝑈𝑦𝑈) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦))) ↔ ((𝑥𝐵𝑦𝐵) → ((𝑥𝑈𝑦𝑈) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)))))
9183, 90syl6bbr 277 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) → (((𝑥𝐵𝑦𝐵) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦))) ↔ ((𝑥𝑈𝑦𝑈) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)))))
92912albidv 1838 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) → (∀𝑥𝑦((𝑥𝐵𝑦𝐵) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦))) ↔ ∀𝑥𝑦((𝑥𝑈𝑦𝑈) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)))))
93 r2al 2923 . . . . . . . . . 10 (∀𝑥𝐵𝑦𝐵 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ↔ ∀𝑥𝑦((𝑥𝐵𝑦𝐵) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦))))
94 r2al 2923 . . . . . . . . . 10 (∀𝑥𝑈𝑦𝑈 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ↔ ∀𝑥𝑦((𝑥𝑈𝑦𝑈) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦))))
9592, 93, 943bitr4g 302 . . . . . . . . 9 (((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) → (∀𝑥𝐵𝑦𝐵 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ↔ ∀𝑥𝑈𝑦𝑈 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦))))
9695adantrr 749 . . . . . . . 8 (((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ (𝑋:𝐵⟶ℂ ∧ (𝑋‘(1r𝑍)) = 1)) → (∀𝑥𝐵𝑦𝐵 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ↔ ∀𝑥𝑈𝑦𝑈 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦))))
9796pm5.32da 671 . . . . . . 7 ((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) → (((𝑋:𝐵⟶ℂ ∧ (𝑋‘(1r𝑍)) = 1) ∧ ∀𝑥𝐵𝑦𝐵 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦))) ↔ ((𝑋:𝐵⟶ℂ ∧ (𝑋‘(1r𝑍)) = 1) ∧ ∀𝑥𝑈𝑦𝑈 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)))))
98 3anan32 1043 . . . . . . 7 ((𝑋:𝐵⟶ℂ ∧ ∀𝑥𝐵𝑦𝐵 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r𝑍)) = 1) ↔ ((𝑋:𝐵⟶ℂ ∧ (𝑋‘(1r𝑍)) = 1) ∧ ∀𝑥𝐵𝑦𝐵 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦))))
99 an31 837 . . . . . . 7 (((∀𝑥𝑈𝑦𝑈 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r𝑍)) = 1) ∧ 𝑋:𝐵⟶ℂ) ↔ ((𝑋:𝐵⟶ℂ ∧ (𝑋‘(1r𝑍)) = 1) ∧ ∀𝑥𝑈𝑦𝑈 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦))))
10097, 98, 993bitr4g 302 . . . . . 6 ((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) → ((𝑋:𝐵⟶ℂ ∧ ∀𝑥𝐵𝑦𝐵 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r𝑍)) = 1) ↔ ((∀𝑥𝑈𝑦𝑈 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r𝑍)) = 1) ∧ 𝑋:𝐵⟶ℂ)))
10139, 100bitrd 267 . . . . 5 ((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) → (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ↔ ((∀𝑥𝑈𝑦𝑈 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r𝑍)) = 1) ∧ 𝑋:𝐵⟶ℂ)))
10212, 101sylan2br 492 . . . 4 ((𝜑 ∧ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈)) → (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ↔ ((∀𝑥𝑈𝑦𝑈 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r𝑍)) = 1) ∧ 𝑋:𝐵⟶ℂ)))
103102pm5.32da 671 . . 3 (𝜑 → ((∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈) ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) ↔ (∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈) ∧ ((∀𝑥𝑈𝑦𝑈 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r𝑍)) = 1) ∧ 𝑋:𝐵⟶ℂ))))
104 ancom 465 . . 3 ((𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈)) ↔ (∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈) ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))))
105 df-3an 1033 . . . . 5 ((∀𝑥𝑈𝑦𝑈 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r𝑍)) = 1 ∧ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈)) ↔ ((∀𝑥𝑈𝑦𝑈 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r𝑍)) = 1) ∧ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈)))
106105anbi2i 726 . . . 4 ((𝑋:𝐵⟶ℂ ∧ (∀𝑥𝑈𝑦𝑈 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r𝑍)) = 1 ∧ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈))) ↔ (𝑋:𝐵⟶ℂ ∧ ((∀𝑥𝑈𝑦𝑈 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r𝑍)) = 1) ∧ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈))))
107 an13 836 . . . 4 ((𝑋:𝐵⟶ℂ ∧ ((∀𝑥𝑈𝑦𝑈 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r𝑍)) = 1) ∧ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈))) ↔ (∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈) ∧ ((∀𝑥𝑈𝑦𝑈 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r𝑍)) = 1) ∧ 𝑋:𝐵⟶ℂ)))
108106, 107bitri 263 . . 3 ((𝑋:𝐵⟶ℂ ∧ (∀𝑥𝑈𝑦𝑈 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r𝑍)) = 1 ∧ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈))) ↔ (∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈) ∧ ((∀𝑥𝑈𝑦𝑈 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r𝑍)) = 1) ∧ 𝑋:𝐵⟶ℂ)))
109103, 104, 1083bitr4g 302 . 2 (𝜑 → ((𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈)) ↔ (𝑋:𝐵⟶ℂ ∧ (∀𝑥𝑈𝑦𝑈 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r𝑍)) = 1 ∧ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈)))))
1107, 109bitrd 267 1 (𝜑 → (𝑋𝐷 ↔ (𝑋:𝐵⟶ℂ ∧ (∀𝑥𝑈𝑦𝑈 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r𝑍)) = 1 ∧ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383  w3a 1031  wal 1473   = wceq 1475  wcel 1977  wne 2780  wral 2896  wf 5800  cfv 5804  (class class class)co 6549  cc 9813  0cc0 9815  1c1 9816   · cmul 9820  cn 10897  0cn0 11169  Basecbs 15695  .rcmulr 15769  Mndcmnd 17117   MndHom cmhm 17156  mulGrpcmgp 18312  1rcur 18324  Ringcrg 18370  CRingccrg 18371  Unitcui 18462  fldccnfld 19567  ℤ/nczn 19670  DChrcdchr 24757
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-tpos 7239  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-ec 7631  df-qs 7635  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-fz 12198  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-0g 15925  df-imas 15991  df-qus 15992  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-mhm 17158  df-grp 17248  df-minusg 17249  df-sbg 17250  df-subg 17414  df-nsg 17415  df-eqg 17416  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-ring 18372  df-cring 18373  df-oppr 18446  df-dvdsr 18464  df-unit 18465  df-subrg 18601  df-lmod 18688  df-lss 18754  df-lsp 18793  df-sra 18993  df-rgmod 18994  df-lidl 18995  df-rsp 18996  df-2idl 19053  df-cnfld 19568  df-zring 19638  df-zn 19674  df-dchr 24758
This theorem is referenced by:  dchrelbasd  24764  dchrf  24767  dchrmulcl  24774  dchrinv  24786  lgsdchr  24880
  Copyright terms: Public domain W3C validator