MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrelbas3 Structured version   Unicode version

Theorem dchrelbas3 23385
Description: A Dirichlet character is a monoid homomorphism from the multiplicative monoid on ℤ/nℤ to the multiplicative monoid of  CC, which is zero off the group of units of ℤ/nℤ. (Contributed by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
dchrval.g  |-  G  =  (DChr `  N )
dchrval.z  |-  Z  =  (ℤ/n `  N )
dchrval.b  |-  B  =  ( Base `  Z
)
dchrval.u  |-  U  =  (Unit `  Z )
dchrval.n  |-  ( ph  ->  N  e.  NN )
dchrbas.b  |-  D  =  ( Base `  G
)
Assertion
Ref Expression
dchrelbas3  |-  ( ph  ->  ( X  e.  D  <->  ( X : B --> CC  /\  ( A. x  e.  U  A. y  e.  U  ( X `  ( x ( .r `  Z
) y ) )  =  ( ( X `
 x )  x.  ( X `  y
) )  /\  ( X `  ( 1r `  Z ) )  =  1  /\  A. x  e.  B  ( ( X `  x )  =/=  0  ->  x  e.  U ) ) ) ) )
Distinct variable groups:    x, y, B    x, N    x, U, y    ph, x, y    x, X, y    x, Z, y
Allowed substitution hints:    D( x, y)    G( x, y)    N( y)

Proof of Theorem dchrelbas3
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 dchrval.g . . 3  |-  G  =  (DChr `  N )
2 dchrval.z . . 3  |-  Z  =  (ℤ/n `  N )
3 dchrval.b . . 3  |-  B  =  ( Base `  Z
)
4 dchrval.u . . 3  |-  U  =  (Unit `  Z )
5 dchrval.n . . 3  |-  ( ph  ->  N  e.  NN )
6 dchrbas.b . . 3  |-  D  =  ( Base `  G
)
71, 2, 3, 4, 5, 6dchrelbas2 23384 . 2  |-  ( ph  ->  ( X  e.  D  <->  ( X  e.  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld )
)  /\  A. x  e.  B  ( ( X `  x )  =/=  0  ->  x  e.  U ) ) ) )
8 fveq2 5856 . . . . . . . 8  |-  ( z  =  x  ->  ( X `  z )  =  ( X `  x ) )
98neeq1d 2720 . . . . . . 7  |-  ( z  =  x  ->  (
( X `  z
)  =/=  0  <->  ( X `  x )  =/=  0 ) )
10 eleq1 2515 . . . . . . 7  |-  ( z  =  x  ->  (
z  e.  U  <->  x  e.  U ) )
119, 10imbi12d 320 . . . . . 6  |-  ( z  =  x  ->  (
( ( X `  z )  =/=  0  ->  z  e.  U )  <-> 
( ( X `  x )  =/=  0  ->  x  e.  U ) ) )
1211cbvralv 3070 . . . . 5  |-  ( A. z  e.  B  (
( X `  z
)  =/=  0  -> 
z  e.  U )  <->  A. x  e.  B  ( ( X `  x )  =/=  0  ->  x  e.  U ) )
135nnnn0d 10858 . . . . . . . . . . 11  |-  ( ph  ->  N  e.  NN0 )
142zncrng 18456 . . . . . . . . . . 11  |-  ( N  e.  NN0  ->  Z  e. 
CRing )
1513, 14syl 16 . . . . . . . . . 10  |-  ( ph  ->  Z  e.  CRing )
16 crngring 17083 . . . . . . . . . 10  |-  ( Z  e.  CRing  ->  Z  e.  Ring )
1715, 16syl 16 . . . . . . . . 9  |-  ( ph  ->  Z  e.  Ring )
18 eqid 2443 . . . . . . . . . 10  |-  (mulGrp `  Z )  =  (mulGrp `  Z )
1918ringmgp 17078 . . . . . . . . 9  |-  ( Z  e.  Ring  ->  (mulGrp `  Z )  e.  Mnd )
2017, 19syl 16 . . . . . . . 8  |-  ( ph  ->  (mulGrp `  Z )  e.  Mnd )
21 cnring 18314 . . . . . . . . 9  |-fld  e.  Ring
22 eqid 2443 . . . . . . . . . 10  |-  (mulGrp ` fld )  =  (mulGrp ` fld )
2322ringmgp 17078 . . . . . . . . 9  |-  (fld  e.  Ring  -> 
(mulGrp ` fld )  e.  Mnd )
2421, 23ax-mp 5 . . . . . . . 8  |-  (mulGrp ` fld )  e.  Mnd
2518, 3mgpbas 17021 . . . . . . . . . 10  |-  B  =  ( Base `  (mulGrp `  Z ) )
26 cnfldbas 18298 . . . . . . . . . . 11  |-  CC  =  ( Base ` fld )
2722, 26mgpbas 17021 . . . . . . . . . 10  |-  CC  =  ( Base `  (mulGrp ` fld ) )
28 eqid 2443 . . . . . . . . . . 11  |-  ( .r
`  Z )  =  ( .r `  Z
)
2918, 28mgpplusg 17019 . . . . . . . . . 10  |-  ( .r
`  Z )  =  ( +g  `  (mulGrp `  Z ) )
30 cnfldmul 18300 . . . . . . . . . . 11  |-  x.  =  ( .r ` fld )
3122, 30mgpplusg 17019 . . . . . . . . . 10  |-  x.  =  ( +g  `  (mulGrp ` fld )
)
32 eqid 2443 . . . . . . . . . . 11  |-  ( 1r
`  Z )  =  ( 1r `  Z
)
3318, 32ringidval 17029 . . . . . . . . . 10  |-  ( 1r
`  Z )  =  ( 0g `  (mulGrp `  Z ) )
34 cnfld1 18317 . . . . . . . . . . 11  |-  1  =  ( 1r ` fld )
3522, 34ringidval 17029 . . . . . . . . . 10  |-  1  =  ( 0g `  (mulGrp ` fld ) )
3625, 27, 29, 31, 33, 35ismhm 15842 . . . . . . . . 9  |-  ( X  e.  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld ) )  <->  ( (
(mulGrp `  Z )  e.  Mnd  /\  (mulGrp ` fld )  e.  Mnd )  /\  ( X : B --> CC  /\  A. x  e.  B  A. y  e.  B  ( X `  ( x
( .r `  Z
) y ) )  =  ( ( X `
 x )  x.  ( X `  y
) )  /\  ( X `  ( 1r `  Z ) )  =  1 ) ) )
3736baib 903 . . . . . . . 8  |-  ( ( (mulGrp `  Z )  e.  Mnd  /\  (mulGrp ` fld )  e.  Mnd )  ->  ( X  e.  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld )
)  <->  ( X : B
--> CC  /\  A. x  e.  B  A. y  e.  B  ( X `  ( x ( .r
`  Z ) y ) )  =  ( ( X `  x
)  x.  ( X `
 y ) )  /\  ( X `  ( 1r `  Z ) )  =  1 ) ) )
3820, 24, 37sylancl 662 . . . . . . 7  |-  ( ph  ->  ( X  e.  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld ) )  <->  ( X : B --> CC  /\  A. x  e.  B  A. y  e.  B  ( X `  ( x
( .r `  Z
) y ) )  =  ( ( X `
 x )  x.  ( X `  y
) )  /\  ( X `  ( 1r `  Z ) )  =  1 ) ) )
3938adantr 465 . . . . . 6  |-  ( (
ph  /\  A. z  e.  B  ( ( X `  z )  =/=  0  ->  z  e.  U ) )  -> 
( X  e.  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld ) )  <->  ( X : B --> CC  /\  A. x  e.  B  A. y  e.  B  ( X `  ( x
( .r `  Z
) y ) )  =  ( ( X `
 x )  x.  ( X `  y
) )  /\  ( X `  ( 1r `  Z ) )  =  1 ) ) )
40 biimt 335 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  U  /\  y  e.  U )  ->  ( ( X `  ( x ( .r
`  Z ) y ) )  =  ( ( X `  x
)  x.  ( X `
 y ) )  <-> 
( ( x  e.  U  /\  y  e.  U )  ->  ( X `  ( x
( .r `  Z
) y ) )  =  ( ( X `
 x )  x.  ( X `  y
) ) ) ) )
4140adantl 466 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\ 
A. z  e.  B  ( ( X `  z )  =/=  0  ->  z  e.  U ) )  /\  X : B
--> CC )  /\  (
x  e.  B  /\  y  e.  B )
)  /\  ( x  e.  U  /\  y  e.  U ) )  -> 
( ( X `  ( x ( .r
`  Z ) y ) )  =  ( ( X `  x
)  x.  ( X `
 y ) )  <-> 
( ( x  e.  U  /\  y  e.  U )  ->  ( X `  ( x
( .r `  Z
) y ) )  =  ( ( X `
 x )  x.  ( X `  y
) ) ) ) )
4217ad3antrrr 729 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  A. z  e.  B  ( ( X `  z
)  =/=  0  -> 
z  e.  U ) )  /\  X : B
--> CC )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  Z  e.  Ring )
43 simprl 756 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  A. z  e.  B  ( ( X `  z
)  =/=  0  -> 
z  e.  U ) )  /\  X : B
--> CC )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  x  e.  B )
44 simprr 757 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  A. z  e.  B  ( ( X `  z
)  =/=  0  -> 
z  e.  U ) )  /\  X : B
--> CC )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  y  e.  B )
453, 28ringcl 17086 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( Z  e.  Ring  /\  x  e.  B  /\  y  e.  B )  ->  (
x ( .r `  Z ) y )  e.  B )
4642, 43, 44, 45syl3anc 1229 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  A. z  e.  B  ( ( X `  z
)  =/=  0  -> 
z  e.  U ) )  /\  X : B
--> CC )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( x
( .r `  Z
) y )  e.  B )
47 simpllr 760 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  A. z  e.  B  ( ( X `  z
)  =/=  0  -> 
z  e.  U ) )  /\  X : B
--> CC )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  A. z  e.  B  ( ( X `  z )  =/=  0  ->  z  e.  U ) )
48 fveq2 5856 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( z  =  ( x ( .r `  Z ) y )  ->  ( X `  z )  =  ( X `  ( x ( .r
`  Z ) y ) ) )
4948neeq1d 2720 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( z  =  ( x ( .r `  Z ) y )  ->  (
( X `  z
)  =/=  0  <->  ( X `  ( x
( .r `  Z
) y ) )  =/=  0 ) )
50 eleq1 2515 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( z  =  ( x ( .r `  Z ) y )  ->  (
z  e.  U  <->  ( x
( .r `  Z
) y )  e.  U ) )
5149, 50imbi12d 320 . . . . . . . . . . . . . . . . . . . . 21  |-  ( z  =  ( x ( .r `  Z ) y )  ->  (
( ( X `  z )  =/=  0  ->  z  e.  U )  <-> 
( ( X `  ( x ( .r
`  Z ) y ) )  =/=  0  ->  ( x ( .r
`  Z ) y )  e.  U ) ) )
5251rspcv 3192 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x ( .r `  Z ) y )  e.  B  ->  ( A. z  e.  B  ( ( X `  z )  =/=  0  ->  z  e.  U )  ->  ( ( X `
 ( x ( .r `  Z ) y ) )  =/=  0  ->  ( x
( .r `  Z
) y )  e.  U ) ) )
5346, 47, 52sylc 60 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  A. z  e.  B  ( ( X `  z
)  =/=  0  -> 
z  e.  U ) )  /\  X : B
--> CC )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( ( X `  ( x
( .r `  Z
) y ) )  =/=  0  ->  (
x ( .r `  Z ) y )  e.  U ) )
5415ad3antrrr 729 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  A. z  e.  B  ( ( X `  z
)  =/=  0  -> 
z  e.  U ) )  /\  X : B
--> CC )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  Z  e.  CRing
)
554, 28, 3unitmulclb 17188 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( Z  e.  CRing  /\  x  e.  B  /\  y  e.  B )  ->  (
( x ( .r
`  Z ) y )  e.  U  <->  ( x  e.  U  /\  y  e.  U ) ) )
5654, 43, 44, 55syl3anc 1229 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  A. z  e.  B  ( ( X `  z
)  =/=  0  -> 
z  e.  U ) )  /\  X : B
--> CC )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( (
x ( .r `  Z ) y )  e.  U  <->  ( x  e.  U  /\  y  e.  U ) ) )
5753, 56sylibd 214 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  A. z  e.  B  ( ( X `  z
)  =/=  0  -> 
z  e.  U ) )  /\  X : B
--> CC )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( ( X `  ( x
( .r `  Z
) y ) )  =/=  0  ->  (
x  e.  U  /\  y  e.  U )
) )
5857necon1bd 2661 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  A. z  e.  B  ( ( X `  z
)  =/=  0  -> 
z  e.  U ) )  /\  X : B
--> CC )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( -.  ( x  e.  U  /\  y  e.  U
)  ->  ( X `  ( x ( .r
`  Z ) y ) )  =  0 ) )
5958imp 429 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\ 
A. z  e.  B  ( ( X `  z )  =/=  0  ->  z  e.  U ) )  /\  X : B
--> CC )  /\  (
x  e.  B  /\  y  e.  B )
)  /\  -.  (
x  e.  U  /\  y  e.  U )
)  ->  ( X `  ( x ( .r
`  Z ) y ) )  =  0 )
6011rspcv 3192 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  e.  B  ->  ( A. z  e.  B  ( ( X `  z )  =/=  0  ->  z  e.  U )  ->  ( ( X `
 x )  =/=  0  ->  x  e.  U ) ) )
6143, 47, 60sylc 60 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  A. z  e.  B  ( ( X `  z
)  =/=  0  -> 
z  e.  U ) )  /\  X : B
--> CC )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( ( X `  x )  =/=  0  ->  x  e.  U ) )
62 fveq2 5856 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( z  =  y  ->  ( X `  z )  =  ( X `  y ) )
6362neeq1d 2720 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( z  =  y  ->  (
( X `  z
)  =/=  0  <->  ( X `  y )  =/=  0 ) )
64 eleq1 2515 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( z  =  y  ->  (
z  e.  U  <->  y  e.  U ) )
6563, 64imbi12d 320 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( z  =  y  ->  (
( ( X `  z )  =/=  0  ->  z  e.  U )  <-> 
( ( X `  y )  =/=  0  ->  y  e.  U ) ) )
6665rspcv 3192 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y  e.  B  ->  ( A. z  e.  B  ( ( X `  z )  =/=  0  ->  z  e.  U )  ->  ( ( X `
 y )  =/=  0  ->  y  e.  U ) ) )
6744, 47, 66sylc 60 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  A. z  e.  B  ( ( X `  z
)  =/=  0  -> 
z  e.  U ) )  /\  X : B
--> CC )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( ( X `  y )  =/=  0  ->  y  e.  U ) )
6861, 67anim12d 563 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  A. z  e.  B  ( ( X `  z
)  =/=  0  -> 
z  e.  U ) )  /\  X : B
--> CC )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( (
( X `  x
)  =/=  0  /\  ( X `  y
)  =/=  0 )  ->  ( x  e.  U  /\  y  e.  U ) ) )
6968con3dimp 441 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ph  /\ 
A. z  e.  B  ( ( X `  z )  =/=  0  ->  z  e.  U ) )  /\  X : B
--> CC )  /\  (
x  e.  B  /\  y  e.  B )
)  /\  -.  (
x  e.  U  /\  y  e.  U )
)  ->  -.  (
( X `  x
)  =/=  0  /\  ( X `  y
)  =/=  0 ) )
70 neanior 2768 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( X `  x
)  =/=  0  /\  ( X `  y
)  =/=  0 )  <->  -.  ( ( X `  x )  =  0  \/  ( X `  y )  =  0 ) )
7170con2bii 332 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( X `  x
)  =  0  \/  ( X `  y
)  =  0 )  <->  -.  ( ( X `  x )  =/=  0  /\  ( X `  y
)  =/=  0 ) )
7269, 71sylibr 212 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ph  /\ 
A. z  e.  B  ( ( X `  z )  =/=  0  ->  z  e.  U ) )  /\  X : B
--> CC )  /\  (
x  e.  B  /\  y  e.  B )
)  /\  -.  (
x  e.  U  /\  y  e.  U )
)  ->  ( ( X `  x )  =  0  \/  ( X `  y )  =  0 ) )
73 simplr 755 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  A. z  e.  B  ( ( X `  z
)  =/=  0  -> 
z  e.  U ) )  /\  X : B
--> CC )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  X : B
--> CC )
7473, 43ffvelrnd 6017 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  A. z  e.  B  ( ( X `  z
)  =/=  0  -> 
z  e.  U ) )  /\  X : B
--> CC )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( X `  x )  e.  CC )
7573, 44ffvelrnd 6017 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  A. z  e.  B  ( ( X `  z
)  =/=  0  -> 
z  e.  U ) )  /\  X : B
--> CC )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( X `  y )  e.  CC )
7674, 75mul0ord 10205 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  A. z  e.  B  ( ( X `  z
)  =/=  0  -> 
z  e.  U ) )  /\  X : B
--> CC )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( (
( X `  x
)  x.  ( X `
 y ) )  =  0  <->  ( ( X `  x )  =  0  \/  ( X `  y )  =  0 ) ) )
7776adantr 465 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ph  /\ 
A. z  e.  B  ( ( X `  z )  =/=  0  ->  z  e.  U ) )  /\  X : B
--> CC )  /\  (
x  e.  B  /\  y  e.  B )
)  /\  -.  (
x  e.  U  /\  y  e.  U )
)  ->  ( (
( X `  x
)  x.  ( X `
 y ) )  =  0  <->  ( ( X `  x )  =  0  \/  ( X `  y )  =  0 ) ) )
7872, 77mpbird 232 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\ 
A. z  e.  B  ( ( X `  z )  =/=  0  ->  z  e.  U ) )  /\  X : B
--> CC )  /\  (
x  e.  B  /\  y  e.  B )
)  /\  -.  (
x  e.  U  /\  y  e.  U )
)  ->  ( ( X `  x )  x.  ( X `  y
) )  =  0 )
7959, 78eqtr4d 2487 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\ 
A. z  e.  B  ( ( X `  z )  =/=  0  ->  z  e.  U ) )  /\  X : B
--> CC )  /\  (
x  e.  B  /\  y  e.  B )
)  /\  -.  (
x  e.  U  /\  y  e.  U )
)  ->  ( X `  ( x ( .r
`  Z ) y ) )  =  ( ( X `  x
)  x.  ( X `
 y ) ) )
8079a1d 25 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\ 
A. z  e.  B  ( ( X `  z )  =/=  0  ->  z  e.  U ) )  /\  X : B
--> CC )  /\  (
x  e.  B  /\  y  e.  B )
)  /\  -.  (
x  e.  U  /\  y  e.  U )
)  ->  ( (
x  e.  U  /\  y  e.  U )  ->  ( X `  (
x ( .r `  Z ) y ) )  =  ( ( X `  x )  x.  ( X `  y ) ) ) )
8179, 802thd 240 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\ 
A. z  e.  B  ( ( X `  z )  =/=  0  ->  z  e.  U ) )  /\  X : B
--> CC )  /\  (
x  e.  B  /\  y  e.  B )
)  /\  -.  (
x  e.  U  /\  y  e.  U )
)  ->  ( ( X `  ( x
( .r `  Z
) y ) )  =  ( ( X `
 x )  x.  ( X `  y
) )  <->  ( (
x  e.  U  /\  y  e.  U )  ->  ( X `  (
x ( .r `  Z ) y ) )  =  ( ( X `  x )  x.  ( X `  y ) ) ) ) )
8241, 81pm2.61dan 791 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  A. z  e.  B  ( ( X `  z
)  =/=  0  -> 
z  e.  U ) )  /\  X : B
--> CC )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( ( X `  ( x
( .r `  Z
) y ) )  =  ( ( X `
 x )  x.  ( X `  y
) )  <->  ( (
x  e.  U  /\  y  e.  U )  ->  ( X `  (
x ( .r `  Z ) y ) )  =  ( ( X `  x )  x.  ( X `  y ) ) ) ) )
8382pm5.74da 687 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  A. z  e.  B  (
( X `  z
)  =/=  0  -> 
z  e.  U ) )  /\  X : B
--> CC )  ->  (
( ( x  e.  B  /\  y  e.  B )  ->  ( X `  ( x
( .r `  Z
) y ) )  =  ( ( X `
 x )  x.  ( X `  y
) ) )  <->  ( (
x  e.  B  /\  y  e.  B )  ->  ( ( x  e.  U  /\  y  e.  U )  ->  ( X `  ( x
( .r `  Z
) y ) )  =  ( ( X `
 x )  x.  ( X `  y
) ) ) ) ) )
843, 4unitcl 17182 . . . . . . . . . . . . . . . 16  |-  ( x  e.  U  ->  x  e.  B )
853, 4unitcl 17182 . . . . . . . . . . . . . . . 16  |-  ( y  e.  U  ->  y  e.  B )
8684, 85anim12i 566 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  U  /\  y  e.  U )  ->  ( x  e.  B  /\  y  e.  B
) )
8786pm4.71ri 633 . . . . . . . . . . . . . 14  |-  ( ( x  e.  U  /\  y  e.  U )  <->  ( ( x  e.  B  /\  y  e.  B
)  /\  ( x  e.  U  /\  y  e.  U ) ) )
8887imbi1i 325 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  U  /\  y  e.  U
)  ->  ( X `  ( x ( .r
`  Z ) y ) )  =  ( ( X `  x
)  x.  ( X `
 y ) ) )  <->  ( ( ( x  e.  B  /\  y  e.  B )  /\  ( x  e.  U  /\  y  e.  U
) )  ->  ( X `  ( x
( .r `  Z
) y ) )  =  ( ( X `
 x )  x.  ( X `  y
) ) ) )
89 impexp 446 . . . . . . . . . . . . 13  |-  ( ( ( ( x  e.  B  /\  y  e.  B )  /\  (
x  e.  U  /\  y  e.  U )
)  ->  ( X `  ( x ( .r
`  Z ) y ) )  =  ( ( X `  x
)  x.  ( X `
 y ) ) )  <->  ( ( x  e.  B  /\  y  e.  B )  ->  (
( x  e.  U  /\  y  e.  U
)  ->  ( X `  ( x ( .r
`  Z ) y ) )  =  ( ( X `  x
)  x.  ( X `
 y ) ) ) ) )
9088, 89bitri 249 . . . . . . . . . . . 12  |-  ( ( ( x  e.  U  /\  y  e.  U
)  ->  ( X `  ( x ( .r
`  Z ) y ) )  =  ( ( X `  x
)  x.  ( X `
 y ) ) )  <->  ( ( x  e.  B  /\  y  e.  B )  ->  (
( x  e.  U  /\  y  e.  U
)  ->  ( X `  ( x ( .r
`  Z ) y ) )  =  ( ( X `  x
)  x.  ( X `
 y ) ) ) ) )
9183, 90syl6bbr 263 . . . . . . . . . . 11  |-  ( ( ( ph  /\  A. z  e.  B  (
( X `  z
)  =/=  0  -> 
z  e.  U ) )  /\  X : B
--> CC )  ->  (
( ( x  e.  B  /\  y  e.  B )  ->  ( X `  ( x
( .r `  Z
) y ) )  =  ( ( X `
 x )  x.  ( X `  y
) ) )  <->  ( (
x  e.  U  /\  y  e.  U )  ->  ( X `  (
x ( .r `  Z ) y ) )  =  ( ( X `  x )  x.  ( X `  y ) ) ) ) )
92912albidv 1702 . . . . . . . . . 10  |-  ( ( ( ph  /\  A. z  e.  B  (
( X `  z
)  =/=  0  -> 
z  e.  U ) )  /\  X : B
--> CC )  ->  ( A. x A. y ( ( x  e.  B  /\  y  e.  B
)  ->  ( X `  ( x ( .r
`  Z ) y ) )  =  ( ( X `  x
)  x.  ( X `
 y ) ) )  <->  A. x A. y
( ( x  e.  U  /\  y  e.  U )  ->  ( X `  ( x
( .r `  Z
) y ) )  =  ( ( X `
 x )  x.  ( X `  y
) ) ) ) )
93 r2al 2821 . . . . . . . . . 10  |-  ( A. x  e.  B  A. y  e.  B  ( X `  ( x
( .r `  Z
) y ) )  =  ( ( X `
 x )  x.  ( X `  y
) )  <->  A. x A. y ( ( x  e.  B  /\  y  e.  B )  ->  ( X `  ( x
( .r `  Z
) y ) )  =  ( ( X `
 x )  x.  ( X `  y
) ) ) )
94 r2al 2821 . . . . . . . . . 10  |-  ( A. x  e.  U  A. y  e.  U  ( X `  ( x
( .r `  Z
) y ) )  =  ( ( X `
 x )  x.  ( X `  y
) )  <->  A. x A. y ( ( x  e.  U  /\  y  e.  U )  ->  ( X `  ( x
( .r `  Z
) y ) )  =  ( ( X `
 x )  x.  ( X `  y
) ) ) )
9592, 93, 943bitr4g 288 . . . . . . . . 9  |-  ( ( ( ph  /\  A. z  e.  B  (
( X `  z
)  =/=  0  -> 
z  e.  U ) )  /\  X : B
--> CC )  ->  ( A. x  e.  B  A. y  e.  B  ( X `  ( x ( .r `  Z
) y ) )  =  ( ( X `
 x )  x.  ( X `  y
) )  <->  A. x  e.  U  A. y  e.  U  ( X `  ( x ( .r
`  Z ) y ) )  =  ( ( X `  x
)  x.  ( X `
 y ) ) ) )
9695adantrr 716 . . . . . . . 8  |-  ( ( ( ph  /\  A. z  e.  B  (
( X `  z
)  =/=  0  -> 
z  e.  U ) )  /\  ( X : B --> CC  /\  ( X `  ( 1r
`  Z ) )  =  1 ) )  ->  ( A. x  e.  B  A. y  e.  B  ( X `  ( x ( .r
`  Z ) y ) )  =  ( ( X `  x
)  x.  ( X `
 y ) )  <->  A. x  e.  U  A. y  e.  U  ( X `  ( x ( .r `  Z
) y ) )  =  ( ( X `
 x )  x.  ( X `  y
) ) ) )
9796pm5.32da 641 . . . . . . 7  |-  ( (
ph  /\  A. z  e.  B  ( ( X `  z )  =/=  0  ->  z  e.  U ) )  -> 
( ( ( X : B --> CC  /\  ( X `  ( 1r
`  Z ) )  =  1 )  /\  A. x  e.  B  A. y  e.  B  ( X `  ( x
( .r `  Z
) y ) )  =  ( ( X `
 x )  x.  ( X `  y
) ) )  <->  ( ( X : B --> CC  /\  ( X `  ( 1r
`  Z ) )  =  1 )  /\  A. x  e.  U  A. y  e.  U  ( X `  ( x
( .r `  Z
) y ) )  =  ( ( X `
 x )  x.  ( X `  y
) ) ) ) )
98 3anan32 986 . . . . . . 7  |-  ( ( X : B --> CC  /\  A. x  e.  B  A. y  e.  B  ( X `  ( x
( .r `  Z
) y ) )  =  ( ( X `
 x )  x.  ( X `  y
) )  /\  ( X `  ( 1r `  Z ) )  =  1 )  <->  ( ( X : B --> CC  /\  ( X `  ( 1r
`  Z ) )  =  1 )  /\  A. x  e.  B  A. y  e.  B  ( X `  ( x
( .r `  Z
) y ) )  =  ( ( X `
 x )  x.  ( X `  y
) ) ) )
99 an31 800 . . . . . . 7  |-  ( ( ( A. x  e.  U  A. y  e.  U  ( X `  ( x ( .r
`  Z ) y ) )  =  ( ( X `  x
)  x.  ( X `
 y ) )  /\  ( X `  ( 1r `  Z ) )  =  1 )  /\  X : B --> CC )  <->  ( ( X : B --> CC  /\  ( X `  ( 1r
`  Z ) )  =  1 )  /\  A. x  e.  U  A. y  e.  U  ( X `  ( x
( .r `  Z
) y ) )  =  ( ( X `
 x )  x.  ( X `  y
) ) ) )
10097, 98, 993bitr4g 288 . . . . . 6  |-  ( (
ph  /\  A. z  e.  B  ( ( X `  z )  =/=  0  ->  z  e.  U ) )  -> 
( ( X : B
--> CC  /\  A. x  e.  B  A. y  e.  B  ( X `  ( x ( .r
`  Z ) y ) )  =  ( ( X `  x
)  x.  ( X `
 y ) )  /\  ( X `  ( 1r `  Z ) )  =  1 )  <-> 
( ( A. x  e.  U  A. y  e.  U  ( X `  ( x ( .r
`  Z ) y ) )  =  ( ( X `  x
)  x.  ( X `
 y ) )  /\  ( X `  ( 1r `  Z ) )  =  1 )  /\  X : B --> CC ) ) )
10139, 100bitrd 253 . . . . 5  |-  ( (
ph  /\  A. z  e.  B  ( ( X `  z )  =/=  0  ->  z  e.  U ) )  -> 
( X  e.  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld ) )  <->  ( ( A. x  e.  U  A. y  e.  U  ( X `  ( x ( .r `  Z
) y ) )  =  ( ( X `
 x )  x.  ( X `  y
) )  /\  ( X `  ( 1r `  Z ) )  =  1 )  /\  X : B --> CC ) ) )
10212, 101sylan2br 476 . . . 4  |-  ( (
ph  /\  A. x  e.  B  ( ( X `  x )  =/=  0  ->  x  e.  U ) )  -> 
( X  e.  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld ) )  <->  ( ( A. x  e.  U  A. y  e.  U  ( X `  ( x ( .r `  Z
) y ) )  =  ( ( X `
 x )  x.  ( X `  y
) )  /\  ( X `  ( 1r `  Z ) )  =  1 )  /\  X : B --> CC ) ) )
103102pm5.32da 641 . . 3  |-  ( ph  ->  ( ( A. x  e.  B  ( ( X `  x )  =/=  0  ->  x  e.  U )  /\  X  e.  ( (mulGrp `  Z
) MndHom  (mulGrp ` fld ) ) )  <->  ( A. x  e.  B  (
( X `  x
)  =/=  0  ->  x  e.  U )  /\  ( ( A. x  e.  U  A. y  e.  U  ( X `  ( x ( .r
`  Z ) y ) )  =  ( ( X `  x
)  x.  ( X `
 y ) )  /\  ( X `  ( 1r `  Z ) )  =  1 )  /\  X : B --> CC ) ) ) )
104 ancom 450 . . 3  |-  ( ( X  e.  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld )
)  /\  A. x  e.  B  ( ( X `  x )  =/=  0  ->  x  e.  U ) )  <->  ( A. x  e.  B  (
( X `  x
)  =/=  0  ->  x  e.  U )  /\  X  e.  (
(mulGrp `  Z ) MndHom  (mulGrp ` fld ) ) ) )
105 df-3an 976 . . . . 5  |-  ( ( A. x  e.  U  A. y  e.  U  ( X `  ( x ( .r `  Z
) y ) )  =  ( ( X `
 x )  x.  ( X `  y
) )  /\  ( X `  ( 1r `  Z ) )  =  1  /\  A. x  e.  B  ( ( X `  x )  =/=  0  ->  x  e.  U ) )  <->  ( ( A. x  e.  U  A. y  e.  U  ( X `  ( x ( .r `  Z
) y ) )  =  ( ( X `
 x )  x.  ( X `  y
) )  /\  ( X `  ( 1r `  Z ) )  =  1 )  /\  A. x  e.  B  (
( X `  x
)  =/=  0  ->  x  e.  U )
) )
106105anbi2i 694 . . . 4  |-  ( ( X : B --> CC  /\  ( A. x  e.  U  A. y  e.  U  ( X `  ( x ( .r `  Z
) y ) )  =  ( ( X `
 x )  x.  ( X `  y
) )  /\  ( X `  ( 1r `  Z ) )  =  1  /\  A. x  e.  B  ( ( X `  x )  =/=  0  ->  x  e.  U ) ) )  <-> 
( X : B --> CC  /\  ( ( A. x  e.  U  A. y  e.  U  ( X `  ( x
( .r `  Z
) y ) )  =  ( ( X `
 x )  x.  ( X `  y
) )  /\  ( X `  ( 1r `  Z ) )  =  1 )  /\  A. x  e.  B  (
( X `  x
)  =/=  0  ->  x  e.  U )
) ) )
107 an13 799 . . . 4  |-  ( ( X : B --> CC  /\  ( ( A. x  e.  U  A. y  e.  U  ( X `  ( x ( .r
`  Z ) y ) )  =  ( ( X `  x
)  x.  ( X `
 y ) )  /\  ( X `  ( 1r `  Z ) )  =  1 )  /\  A. x  e.  B  ( ( X `
 x )  =/=  0  ->  x  e.  U ) ) )  <-> 
( A. x  e.  B  ( ( X `
 x )  =/=  0  ->  x  e.  U )  /\  (
( A. x  e.  U  A. y  e.  U  ( X `  ( x ( .r
`  Z ) y ) )  =  ( ( X `  x
)  x.  ( X `
 y ) )  /\  ( X `  ( 1r `  Z ) )  =  1 )  /\  X : B --> CC ) ) )
108106, 107bitri 249 . . 3  |-  ( ( X : B --> CC  /\  ( A. x  e.  U  A. y  e.  U  ( X `  ( x ( .r `  Z
) y ) )  =  ( ( X `
 x )  x.  ( X `  y
) )  /\  ( X `  ( 1r `  Z ) )  =  1  /\  A. x  e.  B  ( ( X `  x )  =/=  0  ->  x  e.  U ) ) )  <-> 
( A. x  e.  B  ( ( X `
 x )  =/=  0  ->  x  e.  U )  /\  (
( A. x  e.  U  A. y  e.  U  ( X `  ( x ( .r
`  Z ) y ) )  =  ( ( X `  x
)  x.  ( X `
 y ) )  /\  ( X `  ( 1r `  Z ) )  =  1 )  /\  X : B --> CC ) ) )
109103, 104, 1083bitr4g 288 . 2  |-  ( ph  ->  ( ( X  e.  ( (mulGrp `  Z
) MndHom  (mulGrp ` fld ) )  /\  A. x  e.  B  (
( X `  x
)  =/=  0  ->  x  e.  U )
)  <->  ( X : B
--> CC  /\  ( A. x  e.  U  A. y  e.  U  ( X `  ( x
( .r `  Z
) y ) )  =  ( ( X `
 x )  x.  ( X `  y
) )  /\  ( X `  ( 1r `  Z ) )  =  1  /\  A. x  e.  B  ( ( X `  x )  =/=  0  ->  x  e.  U ) ) ) ) )
1107, 109bitrd 253 1  |-  ( ph  ->  ( X  e.  D  <->  ( X : B --> CC  /\  ( A. x  e.  U  A. y  e.  U  ( X `  ( x ( .r `  Z
) y ) )  =  ( ( X `
 x )  x.  ( X `  y
) )  /\  ( X `  ( 1r `  Z ) )  =  1  /\  A. x  e.  B  ( ( X `  x )  =/=  0  ->  x  e.  U ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 974   A.wal 1381    = wceq 1383    e. wcel 1804    =/= wne 2638   A.wral 2793   -->wf 5574   ` cfv 5578  (class class class)co 6281   CCcc 9493   0cc0 9495   1c1 9496    x. cmul 9500   NNcn 10542   NN0cn0 10801   Basecbs 14509   .rcmulr 14575   Mndcmnd 15793   MndHom cmhm 15838  mulGrpcmgp 17015   1rcur 17027   Ringcrg 17072   CRingccrg 17073  Unitcui 17162  ℂfldccnfld 18294  ℤ/nczn 18413  DChrcdchr 23379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-rep 4548  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577  ax-cnex 9551  ax-resscn 9552  ax-1cn 9553  ax-icn 9554  ax-addcl 9555  ax-addrcl 9556  ax-mulcl 9557  ax-mulrcl 9558  ax-mulcom 9559  ax-addass 9560  ax-mulass 9561  ax-distr 9562  ax-i2m1 9563  ax-1ne0 9564  ax-1rid 9565  ax-rnegex 9566  ax-rrecex 9567  ax-cnre 9568  ax-pre-lttri 9569  ax-pre-lttrn 9570  ax-pre-ltadd 9571  ax-pre-mulgt0 9572  ax-addf 9574  ax-mulf 9575
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-nel 2641  df-ral 2798  df-rex 2799  df-reu 2800  df-rmo 2801  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-tp 4019  df-op 4021  df-uni 4235  df-int 4272  df-iun 4317  df-br 4438  df-opab 4496  df-mpt 4497  df-tr 4531  df-eprel 4781  df-id 4785  df-po 4790  df-so 4791  df-fr 4828  df-we 4830  df-ord 4871  df-on 4872  df-lim 4873  df-suc 4874  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-riota 6242  df-ov 6284  df-oprab 6285  df-mpt2 6286  df-om 6686  df-1st 6785  df-2nd 6786  df-tpos 6957  df-recs 7044  df-rdg 7078  df-1o 7132  df-oadd 7136  df-er 7313  df-ec 7315  df-qs 7319  df-map 7424  df-en 7519  df-dom 7520  df-sdom 7521  df-fin 7522  df-sup 7903  df-pnf 9633  df-mnf 9634  df-xr 9635  df-ltxr 9636  df-le 9637  df-sub 9812  df-neg 9813  df-nn 10543  df-2 10600  df-3 10601  df-4 10602  df-5 10603  df-6 10604  df-7 10605  df-8 10606  df-9 10607  df-10 10608  df-n0 10802  df-z 10871  df-dec 10985  df-uz 11091  df-fz 11682  df-struct 14511  df-ndx 14512  df-slot 14513  df-base 14514  df-sets 14515  df-ress 14516  df-plusg 14587  df-mulr 14588  df-starv 14589  df-sca 14590  df-vsca 14591  df-ip 14592  df-tset 14593  df-ple 14594  df-ds 14596  df-unif 14597  df-0g 14716  df-imas 14782  df-qus 14783  df-mgm 15746  df-sgrp 15785  df-mnd 15795  df-mhm 15840  df-grp 15931  df-minusg 15932  df-sbg 15933  df-subg 16072  df-nsg 16073  df-eqg 16074  df-cmn 16674  df-abl 16675  df-mgp 17016  df-ur 17028  df-ring 17074  df-cring 17075  df-oppr 17146  df-dvdsr 17164  df-unit 17165  df-subrg 17301  df-lmod 17388  df-lss 17453  df-lsp 17492  df-sra 17692  df-rgmod 17693  df-lidl 17694  df-rsp 17695  df-2idl 17754  df-cnfld 18295  df-zring 18363  df-zn 18417  df-dchr 23380
This theorem is referenced by:  dchrelbasd  23386  dchrf  23389  dchrmulcl  23396  dchrinv  23408  lgsdchr  23495
  Copyright terms: Public domain W3C validator