MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrelbas3 Structured version   Visualization version   Unicode version

Theorem dchrelbas3 24159
Description: A Dirichlet character is a monoid homomorphism from the multiplicative monoid on ℤ/nℤ to the multiplicative monoid of  CC, which is zero off the group of units of ℤ/nℤ. (Contributed by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
dchrval.g  |-  G  =  (DChr `  N )
dchrval.z  |-  Z  =  (ℤ/n `  N )
dchrval.b  |-  B  =  ( Base `  Z
)
dchrval.u  |-  U  =  (Unit `  Z )
dchrval.n  |-  ( ph  ->  N  e.  NN )
dchrbas.b  |-  D  =  ( Base `  G
)
Assertion
Ref Expression
dchrelbas3  |-  ( ph  ->  ( X  e.  D  <->  ( X : B --> CC  /\  ( A. x  e.  U  A. y  e.  U  ( X `  ( x ( .r `  Z
) y ) )  =  ( ( X `
 x )  x.  ( X `  y
) )  /\  ( X `  ( 1r `  Z ) )  =  1  /\  A. x  e.  B  ( ( X `  x )  =/=  0  ->  x  e.  U ) ) ) ) )
Distinct variable groups:    x, y, B    x, N    x, U, y    ph, x, y    x, X, y    x, Z, y
Allowed substitution hints:    D( x, y)    G( x, y)    N( y)

Proof of Theorem dchrelbas3
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 dchrval.g . . 3  |-  G  =  (DChr `  N )
2 dchrval.z . . 3  |-  Z  =  (ℤ/n `  N )
3 dchrval.b . . 3  |-  B  =  ( Base `  Z
)
4 dchrval.u . . 3  |-  U  =  (Unit `  Z )
5 dchrval.n . . 3  |-  ( ph  ->  N  e.  NN )
6 dchrbas.b . . 3  |-  D  =  ( Base `  G
)
71, 2, 3, 4, 5, 6dchrelbas2 24158 . 2  |-  ( ph  ->  ( X  e.  D  <->  ( X  e.  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld )
)  /\  A. x  e.  B  ( ( X `  x )  =/=  0  ->  x  e.  U ) ) ) )
8 fveq2 5863 . . . . . . . 8  |-  ( z  =  x  ->  ( X `  z )  =  ( X `  x ) )
98neeq1d 2682 . . . . . . 7  |-  ( z  =  x  ->  (
( X `  z
)  =/=  0  <->  ( X `  x )  =/=  0 ) )
10 eleq1 2516 . . . . . . 7  |-  ( z  =  x  ->  (
z  e.  U  <->  x  e.  U ) )
119, 10imbi12d 322 . . . . . 6  |-  ( z  =  x  ->  (
( ( X `  z )  =/=  0  ->  z  e.  U )  <-> 
( ( X `  x )  =/=  0  ->  x  e.  U ) ) )
1211cbvralv 3018 . . . . 5  |-  ( A. z  e.  B  (
( X `  z
)  =/=  0  -> 
z  e.  U )  <->  A. x  e.  B  ( ( X `  x )  =/=  0  ->  x  e.  U ) )
135nnnn0d 10922 . . . . . . . . . . 11  |-  ( ph  ->  N  e.  NN0 )
142zncrng 19108 . . . . . . . . . . 11  |-  ( N  e.  NN0  ->  Z  e. 
CRing )
1513, 14syl 17 . . . . . . . . . 10  |-  ( ph  ->  Z  e.  CRing )
16 crngring 17784 . . . . . . . . . 10  |-  ( Z  e.  CRing  ->  Z  e.  Ring )
1715, 16syl 17 . . . . . . . . 9  |-  ( ph  ->  Z  e.  Ring )
18 eqid 2450 . . . . . . . . . 10  |-  (mulGrp `  Z )  =  (mulGrp `  Z )
1918ringmgp 17779 . . . . . . . . 9  |-  ( Z  e.  Ring  ->  (mulGrp `  Z )  e.  Mnd )
2017, 19syl 17 . . . . . . . 8  |-  ( ph  ->  (mulGrp `  Z )  e.  Mnd )
21 cnring 18983 . . . . . . . . 9  |-fld  e.  Ring
22 eqid 2450 . . . . . . . . . 10  |-  (mulGrp ` fld )  =  (mulGrp ` fld )
2322ringmgp 17779 . . . . . . . . 9  |-  (fld  e.  Ring  -> 
(mulGrp ` fld )  e.  Mnd )
2421, 23ax-mp 5 . . . . . . . 8  |-  (mulGrp ` fld )  e.  Mnd
2518, 3mgpbas 17722 . . . . . . . . . 10  |-  B  =  ( Base `  (mulGrp `  Z ) )
26 cnfldbas 18967 . . . . . . . . . . 11  |-  CC  =  ( Base ` fld )
2722, 26mgpbas 17722 . . . . . . . . . 10  |-  CC  =  ( Base `  (mulGrp ` fld ) )
28 eqid 2450 . . . . . . . . . . 11  |-  ( .r
`  Z )  =  ( .r `  Z
)
2918, 28mgpplusg 17720 . . . . . . . . . 10  |-  ( .r
`  Z )  =  ( +g  `  (mulGrp `  Z ) )
30 cnfldmul 18969 . . . . . . . . . . 11  |-  x.  =  ( .r ` fld )
3122, 30mgpplusg 17720 . . . . . . . . . 10  |-  x.  =  ( +g  `  (mulGrp ` fld )
)
32 eqid 2450 . . . . . . . . . . 11  |-  ( 1r
`  Z )  =  ( 1r `  Z
)
3318, 32ringidval 17730 . . . . . . . . . 10  |-  ( 1r
`  Z )  =  ( 0g `  (mulGrp `  Z ) )
34 cnfld1 18986 . . . . . . . . . . 11  |-  1  =  ( 1r ` fld )
3522, 34ringidval 17730 . . . . . . . . . 10  |-  1  =  ( 0g `  (mulGrp ` fld ) )
3625, 27, 29, 31, 33, 35ismhm 16577 . . . . . . . . 9  |-  ( X  e.  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld ) )  <->  ( (
(mulGrp `  Z )  e.  Mnd  /\  (mulGrp ` fld )  e.  Mnd )  /\  ( X : B --> CC  /\  A. x  e.  B  A. y  e.  B  ( X `  ( x
( .r `  Z
) y ) )  =  ( ( X `
 x )  x.  ( X `  y
) )  /\  ( X `  ( 1r `  Z ) )  =  1 ) ) )
3736baib 913 . . . . . . . 8  |-  ( ( (mulGrp `  Z )  e.  Mnd  /\  (mulGrp ` fld )  e.  Mnd )  ->  ( X  e.  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld )
)  <->  ( X : B
--> CC  /\  A. x  e.  B  A. y  e.  B  ( X `  ( x ( .r
`  Z ) y ) )  =  ( ( X `  x
)  x.  ( X `
 y ) )  /\  ( X `  ( 1r `  Z ) )  =  1 ) ) )
3820, 24, 37sylancl 667 . . . . . . 7  |-  ( ph  ->  ( X  e.  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld ) )  <->  ( X : B --> CC  /\  A. x  e.  B  A. y  e.  B  ( X `  ( x
( .r `  Z
) y ) )  =  ( ( X `
 x )  x.  ( X `  y
) )  /\  ( X `  ( 1r `  Z ) )  =  1 ) ) )
3938adantr 467 . . . . . 6  |-  ( (
ph  /\  A. z  e.  B  ( ( X `  z )  =/=  0  ->  z  e.  U ) )  -> 
( X  e.  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld ) )  <->  ( X : B --> CC  /\  A. x  e.  B  A. y  e.  B  ( X `  ( x
( .r `  Z
) y ) )  =  ( ( X `
 x )  x.  ( X `  y
) )  /\  ( X `  ( 1r `  Z ) )  =  1 ) ) )
40 biimt 337 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  U  /\  y  e.  U )  ->  ( ( X `  ( x ( .r
`  Z ) y ) )  =  ( ( X `  x
)  x.  ( X `
 y ) )  <-> 
( ( x  e.  U  /\  y  e.  U )  ->  ( X `  ( x
( .r `  Z
) y ) )  =  ( ( X `
 x )  x.  ( X `  y
) ) ) ) )
4140adantl 468 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\ 
A. z  e.  B  ( ( X `  z )  =/=  0  ->  z  e.  U ) )  /\  X : B
--> CC )  /\  (
x  e.  B  /\  y  e.  B )
)  /\  ( x  e.  U  /\  y  e.  U ) )  -> 
( ( X `  ( x ( .r
`  Z ) y ) )  =  ( ( X `  x
)  x.  ( X `
 y ) )  <-> 
( ( x  e.  U  /\  y  e.  U )  ->  ( X `  ( x
( .r `  Z
) y ) )  =  ( ( X `
 x )  x.  ( X `  y
) ) ) ) )
4217ad3antrrr 735 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  A. z  e.  B  ( ( X `  z
)  =/=  0  -> 
z  e.  U ) )  /\  X : B
--> CC )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  Z  e.  Ring )
43 simprl 763 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  A. z  e.  B  ( ( X `  z
)  =/=  0  -> 
z  e.  U ) )  /\  X : B
--> CC )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  x  e.  B )
44 simprr 765 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  A. z  e.  B  ( ( X `  z
)  =/=  0  -> 
z  e.  U ) )  /\  X : B
--> CC )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  y  e.  B )
453, 28ringcl 17787 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( Z  e.  Ring  /\  x  e.  B  /\  y  e.  B )  ->  (
x ( .r `  Z ) y )  e.  B )
4642, 43, 44, 45syl3anc 1267 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  A. z  e.  B  ( ( X `  z
)  =/=  0  -> 
z  e.  U ) )  /\  X : B
--> CC )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( x
( .r `  Z
) y )  e.  B )
47 simpllr 768 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  A. z  e.  B  ( ( X `  z
)  =/=  0  -> 
z  e.  U ) )  /\  X : B
--> CC )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  A. z  e.  B  ( ( X `  z )  =/=  0  ->  z  e.  U ) )
48 fveq2 5863 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( z  =  ( x ( .r `  Z ) y )  ->  ( X `  z )  =  ( X `  ( x ( .r
`  Z ) y ) ) )
4948neeq1d 2682 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( z  =  ( x ( .r `  Z ) y )  ->  (
( X `  z
)  =/=  0  <->  ( X `  ( x
( .r `  Z
) y ) )  =/=  0 ) )
50 eleq1 2516 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( z  =  ( x ( .r `  Z ) y )  ->  (
z  e.  U  <->  ( x
( .r `  Z
) y )  e.  U ) )
5149, 50imbi12d 322 . . . . . . . . . . . . . . . . . . . . 21  |-  ( z  =  ( x ( .r `  Z ) y )  ->  (
( ( X `  z )  =/=  0  ->  z  e.  U )  <-> 
( ( X `  ( x ( .r
`  Z ) y ) )  =/=  0  ->  ( x ( .r
`  Z ) y )  e.  U ) ) )
5251rspcv 3145 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x ( .r `  Z ) y )  e.  B  ->  ( A. z  e.  B  ( ( X `  z )  =/=  0  ->  z  e.  U )  ->  ( ( X `
 ( x ( .r `  Z ) y ) )  =/=  0  ->  ( x
( .r `  Z
) y )  e.  U ) ) )
5346, 47, 52sylc 62 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  A. z  e.  B  ( ( X `  z
)  =/=  0  -> 
z  e.  U ) )  /\  X : B
--> CC )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( ( X `  ( x
( .r `  Z
) y ) )  =/=  0  ->  (
x ( .r `  Z ) y )  e.  U ) )
5415ad3antrrr 735 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  A. z  e.  B  ( ( X `  z
)  =/=  0  -> 
z  e.  U ) )  /\  X : B
--> CC )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  Z  e.  CRing
)
554, 28, 3unitmulclb 17886 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( Z  e.  CRing  /\  x  e.  B  /\  y  e.  B )  ->  (
( x ( .r
`  Z ) y )  e.  U  <->  ( x  e.  U  /\  y  e.  U ) ) )
5654, 43, 44, 55syl3anc 1267 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  A. z  e.  B  ( ( X `  z
)  =/=  0  -> 
z  e.  U ) )  /\  X : B
--> CC )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( (
x ( .r `  Z ) y )  e.  U  <->  ( x  e.  U  /\  y  e.  U ) ) )
5753, 56sylibd 218 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  A. z  e.  B  ( ( X `  z
)  =/=  0  -> 
z  e.  U ) )  /\  X : B
--> CC )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( ( X `  ( x
( .r `  Z
) y ) )  =/=  0  ->  (
x  e.  U  /\  y  e.  U )
) )
5857necon1bd 2641 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  A. z  e.  B  ( ( X `  z
)  =/=  0  -> 
z  e.  U ) )  /\  X : B
--> CC )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( -.  ( x  e.  U  /\  y  e.  U
)  ->  ( X `  ( x ( .r
`  Z ) y ) )  =  0 ) )
5958imp 431 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\ 
A. z  e.  B  ( ( X `  z )  =/=  0  ->  z  e.  U ) )  /\  X : B
--> CC )  /\  (
x  e.  B  /\  y  e.  B )
)  /\  -.  (
x  e.  U  /\  y  e.  U )
)  ->  ( X `  ( x ( .r
`  Z ) y ) )  =  0 )
6011rspcv 3145 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  e.  B  ->  ( A. z  e.  B  ( ( X `  z )  =/=  0  ->  z  e.  U )  ->  ( ( X `
 x )  =/=  0  ->  x  e.  U ) ) )
6143, 47, 60sylc 62 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  A. z  e.  B  ( ( X `  z
)  =/=  0  -> 
z  e.  U ) )  /\  X : B
--> CC )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( ( X `  x )  =/=  0  ->  x  e.  U ) )
62 fveq2 5863 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( z  =  y  ->  ( X `  z )  =  ( X `  y ) )
6362neeq1d 2682 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( z  =  y  ->  (
( X `  z
)  =/=  0  <->  ( X `  y )  =/=  0 ) )
64 eleq1 2516 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( z  =  y  ->  (
z  e.  U  <->  y  e.  U ) )
6563, 64imbi12d 322 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( z  =  y  ->  (
( ( X `  z )  =/=  0  ->  z  e.  U )  <-> 
( ( X `  y )  =/=  0  ->  y  e.  U ) ) )
6665rspcv 3145 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y  e.  B  ->  ( A. z  e.  B  ( ( X `  z )  =/=  0  ->  z  e.  U )  ->  ( ( X `
 y )  =/=  0  ->  y  e.  U ) ) )
6744, 47, 66sylc 62 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  A. z  e.  B  ( ( X `  z
)  =/=  0  -> 
z  e.  U ) )  /\  X : B
--> CC )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( ( X `  y )  =/=  0  ->  y  e.  U ) )
6861, 67anim12d 566 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  A. z  e.  B  ( ( X `  z
)  =/=  0  -> 
z  e.  U ) )  /\  X : B
--> CC )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( (
( X `  x
)  =/=  0  /\  ( X `  y
)  =/=  0 )  ->  ( x  e.  U  /\  y  e.  U ) ) )
6968con3dimp 443 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ph  /\ 
A. z  e.  B  ( ( X `  z )  =/=  0  ->  z  e.  U ) )  /\  X : B
--> CC )  /\  (
x  e.  B  /\  y  e.  B )
)  /\  -.  (
x  e.  U  /\  y  e.  U )
)  ->  -.  (
( X `  x
)  =/=  0  /\  ( X `  y
)  =/=  0 ) )
70 neanior 2715 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( X `  x
)  =/=  0  /\  ( X `  y
)  =/=  0 )  <->  -.  ( ( X `  x )  =  0  \/  ( X `  y )  =  0 ) )
7170con2bii 334 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( X `  x
)  =  0  \/  ( X `  y
)  =  0 )  <->  -.  ( ( X `  x )  =/=  0  /\  ( X `  y
)  =/=  0 ) )
7269, 71sylibr 216 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ph  /\ 
A. z  e.  B  ( ( X `  z )  =/=  0  ->  z  e.  U ) )  /\  X : B
--> CC )  /\  (
x  e.  B  /\  y  e.  B )
)  /\  -.  (
x  e.  U  /\  y  e.  U )
)  ->  ( ( X `  x )  =  0  \/  ( X `  y )  =  0 ) )
73 simplr 761 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  A. z  e.  B  ( ( X `  z
)  =/=  0  -> 
z  e.  U ) )  /\  X : B
--> CC )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  X : B
--> CC )
7473, 43ffvelrnd 6021 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  A. z  e.  B  ( ( X `  z
)  =/=  0  -> 
z  e.  U ) )  /\  X : B
--> CC )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( X `  x )  e.  CC )
7573, 44ffvelrnd 6021 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  A. z  e.  B  ( ( X `  z
)  =/=  0  -> 
z  e.  U ) )  /\  X : B
--> CC )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( X `  y )  e.  CC )
7674, 75mul0ord 10259 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  A. z  e.  B  ( ( X `  z
)  =/=  0  -> 
z  e.  U ) )  /\  X : B
--> CC )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( (
( X `  x
)  x.  ( X `
 y ) )  =  0  <->  ( ( X `  x )  =  0  \/  ( X `  y )  =  0 ) ) )
7776adantr 467 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ph  /\ 
A. z  e.  B  ( ( X `  z )  =/=  0  ->  z  e.  U ) )  /\  X : B
--> CC )  /\  (
x  e.  B  /\  y  e.  B )
)  /\  -.  (
x  e.  U  /\  y  e.  U )
)  ->  ( (
( X `  x
)  x.  ( X `
 y ) )  =  0  <->  ( ( X `  x )  =  0  \/  ( X `  y )  =  0 ) ) )
7872, 77mpbird 236 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\ 
A. z  e.  B  ( ( X `  z )  =/=  0  ->  z  e.  U ) )  /\  X : B
--> CC )  /\  (
x  e.  B  /\  y  e.  B )
)  /\  -.  (
x  e.  U  /\  y  e.  U )
)  ->  ( ( X `  x )  x.  ( X `  y
) )  =  0 )
7959, 78eqtr4d 2487 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\ 
A. z  e.  B  ( ( X `  z )  =/=  0  ->  z  e.  U ) )  /\  X : B
--> CC )  /\  (
x  e.  B  /\  y  e.  B )
)  /\  -.  (
x  e.  U  /\  y  e.  U )
)  ->  ( X `  ( x ( .r
`  Z ) y ) )  =  ( ( X `  x
)  x.  ( X `
 y ) ) )
8079a1d 26 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\ 
A. z  e.  B  ( ( X `  z )  =/=  0  ->  z  e.  U ) )  /\  X : B
--> CC )  /\  (
x  e.  B  /\  y  e.  B )
)  /\  -.  (
x  e.  U  /\  y  e.  U )
)  ->  ( (
x  e.  U  /\  y  e.  U )  ->  ( X `  (
x ( .r `  Z ) y ) )  =  ( ( X `  x )  x.  ( X `  y ) ) ) )
8179, 802thd 244 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\ 
A. z  e.  B  ( ( X `  z )  =/=  0  ->  z  e.  U ) )  /\  X : B
--> CC )  /\  (
x  e.  B  /\  y  e.  B )
)  /\  -.  (
x  e.  U  /\  y  e.  U )
)  ->  ( ( X `  ( x
( .r `  Z
) y ) )  =  ( ( X `
 x )  x.  ( X `  y
) )  <->  ( (
x  e.  U  /\  y  e.  U )  ->  ( X `  (
x ( .r `  Z ) y ) )  =  ( ( X `  x )  x.  ( X `  y ) ) ) ) )
8241, 81pm2.61dan 799 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  A. z  e.  B  ( ( X `  z
)  =/=  0  -> 
z  e.  U ) )  /\  X : B
--> CC )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( ( X `  ( x
( .r `  Z
) y ) )  =  ( ( X `
 x )  x.  ( X `  y
) )  <->  ( (
x  e.  U  /\  y  e.  U )  ->  ( X `  (
x ( .r `  Z ) y ) )  =  ( ( X `  x )  x.  ( X `  y ) ) ) ) )
8382pm5.74da 692 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  A. z  e.  B  (
( X `  z
)  =/=  0  -> 
z  e.  U ) )  /\  X : B
--> CC )  ->  (
( ( x  e.  B  /\  y  e.  B )  ->  ( X `  ( x
( .r `  Z
) y ) )  =  ( ( X `
 x )  x.  ( X `  y
) ) )  <->  ( (
x  e.  B  /\  y  e.  B )  ->  ( ( x  e.  U  /\  y  e.  U )  ->  ( X `  ( x
( .r `  Z
) y ) )  =  ( ( X `
 x )  x.  ( X `  y
) ) ) ) ) )
843, 4unitcl 17880 . . . . . . . . . . . . . . . 16  |-  ( x  e.  U  ->  x  e.  B )
853, 4unitcl 17880 . . . . . . . . . . . . . . . 16  |-  ( y  e.  U  ->  y  e.  B )
8684, 85anim12i 569 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  U  /\  y  e.  U )  ->  ( x  e.  B  /\  y  e.  B
) )
8786pm4.71ri 638 . . . . . . . . . . . . . 14  |-  ( ( x  e.  U  /\  y  e.  U )  <->  ( ( x  e.  B  /\  y  e.  B
)  /\  ( x  e.  U  /\  y  e.  U ) ) )
8887imbi1i 327 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  U  /\  y  e.  U
)  ->  ( X `  ( x ( .r
`  Z ) y ) )  =  ( ( X `  x
)  x.  ( X `
 y ) ) )  <->  ( ( ( x  e.  B  /\  y  e.  B )  /\  ( x  e.  U  /\  y  e.  U
) )  ->  ( X `  ( x
( .r `  Z
) y ) )  =  ( ( X `
 x )  x.  ( X `  y
) ) ) )
89 impexp 448 . . . . . . . . . . . . 13  |-  ( ( ( ( x  e.  B  /\  y  e.  B )  /\  (
x  e.  U  /\  y  e.  U )
)  ->  ( X `  ( x ( .r
`  Z ) y ) )  =  ( ( X `  x
)  x.  ( X `
 y ) ) )  <->  ( ( x  e.  B  /\  y  e.  B )  ->  (
( x  e.  U  /\  y  e.  U
)  ->  ( X `  ( x ( .r
`  Z ) y ) )  =  ( ( X `  x
)  x.  ( X `
 y ) ) ) ) )
9088, 89bitri 253 . . . . . . . . . . . 12  |-  ( ( ( x  e.  U  /\  y  e.  U
)  ->  ( X `  ( x ( .r
`  Z ) y ) )  =  ( ( X `  x
)  x.  ( X `
 y ) ) )  <->  ( ( x  e.  B  /\  y  e.  B )  ->  (
( x  e.  U  /\  y  e.  U
)  ->  ( X `  ( x ( .r
`  Z ) y ) )  =  ( ( X `  x
)  x.  ( X `
 y ) ) ) ) )
9183, 90syl6bbr 267 . . . . . . . . . . 11  |-  ( ( ( ph  /\  A. z  e.  B  (
( X `  z
)  =/=  0  -> 
z  e.  U ) )  /\  X : B
--> CC )  ->  (
( ( x  e.  B  /\  y  e.  B )  ->  ( X `  ( x
( .r `  Z
) y ) )  =  ( ( X `
 x )  x.  ( X `  y
) ) )  <->  ( (
x  e.  U  /\  y  e.  U )  ->  ( X `  (
x ( .r `  Z ) y ) )  =  ( ( X `  x )  x.  ( X `  y ) ) ) ) )
92912albidv 1768 . . . . . . . . . 10  |-  ( ( ( ph  /\  A. z  e.  B  (
( X `  z
)  =/=  0  -> 
z  e.  U ) )  /\  X : B
--> CC )  ->  ( A. x A. y ( ( x  e.  B  /\  y  e.  B
)  ->  ( X `  ( x ( .r
`  Z ) y ) )  =  ( ( X `  x
)  x.  ( X `
 y ) ) )  <->  A. x A. y
( ( x  e.  U  /\  y  e.  U )  ->  ( X `  ( x
( .r `  Z
) y ) )  =  ( ( X `
 x )  x.  ( X `  y
) ) ) ) )
93 r2al 2765 . . . . . . . . . 10  |-  ( A. x  e.  B  A. y  e.  B  ( X `  ( x
( .r `  Z
) y ) )  =  ( ( X `
 x )  x.  ( X `  y
) )  <->  A. x A. y ( ( x  e.  B  /\  y  e.  B )  ->  ( X `  ( x
( .r `  Z
) y ) )  =  ( ( X `
 x )  x.  ( X `  y
) ) ) )
94 r2al 2765 . . . . . . . . . 10  |-  ( A. x  e.  U  A. y  e.  U  ( X `  ( x
( .r `  Z
) y ) )  =  ( ( X `
 x )  x.  ( X `  y
) )  <->  A. x A. y ( ( x  e.  U  /\  y  e.  U )  ->  ( X `  ( x
( .r `  Z
) y ) )  =  ( ( X `
 x )  x.  ( X `  y
) ) ) )
9592, 93, 943bitr4g 292 . . . . . . . . 9  |-  ( ( ( ph  /\  A. z  e.  B  (
( X `  z
)  =/=  0  -> 
z  e.  U ) )  /\  X : B
--> CC )  ->  ( A. x  e.  B  A. y  e.  B  ( X `  ( x ( .r `  Z
) y ) )  =  ( ( X `
 x )  x.  ( X `  y
) )  <->  A. x  e.  U  A. y  e.  U  ( X `  ( x ( .r
`  Z ) y ) )  =  ( ( X `  x
)  x.  ( X `
 y ) ) ) )
9695adantrr 722 . . . . . . . 8  |-  ( ( ( ph  /\  A. z  e.  B  (
( X `  z
)  =/=  0  -> 
z  e.  U ) )  /\  ( X : B --> CC  /\  ( X `  ( 1r
`  Z ) )  =  1 ) )  ->  ( A. x  e.  B  A. y  e.  B  ( X `  ( x ( .r
`  Z ) y ) )  =  ( ( X `  x
)  x.  ( X `
 y ) )  <->  A. x  e.  U  A. y  e.  U  ( X `  ( x ( .r `  Z
) y ) )  =  ( ( X `
 x )  x.  ( X `  y
) ) ) )
9796pm5.32da 646 . . . . . . 7  |-  ( (
ph  /\  A. z  e.  B  ( ( X `  z )  =/=  0  ->  z  e.  U ) )  -> 
( ( ( X : B --> CC  /\  ( X `  ( 1r
`  Z ) )  =  1 )  /\  A. x  e.  B  A. y  e.  B  ( X `  ( x
( .r `  Z
) y ) )  =  ( ( X `
 x )  x.  ( X `  y
) ) )  <->  ( ( X : B --> CC  /\  ( X `  ( 1r
`  Z ) )  =  1 )  /\  A. x  e.  U  A. y  e.  U  ( X `  ( x
( .r `  Z
) y ) )  =  ( ( X `
 x )  x.  ( X `  y
) ) ) ) )
98 3anan32 996 . . . . . . 7  |-  ( ( X : B --> CC  /\  A. x  e.  B  A. y  e.  B  ( X `  ( x
( .r `  Z
) y ) )  =  ( ( X `
 x )  x.  ( X `  y
) )  /\  ( X `  ( 1r `  Z ) )  =  1 )  <->  ( ( X : B --> CC  /\  ( X `  ( 1r
`  Z ) )  =  1 )  /\  A. x  e.  B  A. y  e.  B  ( X `  ( x
( .r `  Z
) y ) )  =  ( ( X `
 x )  x.  ( X `  y
) ) ) )
99 an31 808 . . . . . . 7  |-  ( ( ( A. x  e.  U  A. y  e.  U  ( X `  ( x ( .r
`  Z ) y ) )  =  ( ( X `  x
)  x.  ( X `
 y ) )  /\  ( X `  ( 1r `  Z ) )  =  1 )  /\  X : B --> CC )  <->  ( ( X : B --> CC  /\  ( X `  ( 1r
`  Z ) )  =  1 )  /\  A. x  e.  U  A. y  e.  U  ( X `  ( x
( .r `  Z
) y ) )  =  ( ( X `
 x )  x.  ( X `  y
) ) ) )
10097, 98, 993bitr4g 292 . . . . . 6  |-  ( (
ph  /\  A. z  e.  B  ( ( X `  z )  =/=  0  ->  z  e.  U ) )  -> 
( ( X : B
--> CC  /\  A. x  e.  B  A. y  e.  B  ( X `  ( x ( .r
`  Z ) y ) )  =  ( ( X `  x
)  x.  ( X `
 y ) )  /\  ( X `  ( 1r `  Z ) )  =  1 )  <-> 
( ( A. x  e.  U  A. y  e.  U  ( X `  ( x ( .r
`  Z ) y ) )  =  ( ( X `  x
)  x.  ( X `
 y ) )  /\  ( X `  ( 1r `  Z ) )  =  1 )  /\  X : B --> CC ) ) )
10139, 100bitrd 257 . . . . 5  |-  ( (
ph  /\  A. z  e.  B  ( ( X `  z )  =/=  0  ->  z  e.  U ) )  -> 
( X  e.  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld ) )  <->  ( ( A. x  e.  U  A. y  e.  U  ( X `  ( x ( .r `  Z
) y ) )  =  ( ( X `
 x )  x.  ( X `  y
) )  /\  ( X `  ( 1r `  Z ) )  =  1 )  /\  X : B --> CC ) ) )
10212, 101sylan2br 479 . . . 4  |-  ( (
ph  /\  A. x  e.  B  ( ( X `  x )  =/=  0  ->  x  e.  U ) )  -> 
( X  e.  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld ) )  <->  ( ( A. x  e.  U  A. y  e.  U  ( X `  ( x ( .r `  Z
) y ) )  =  ( ( X `
 x )  x.  ( X `  y
) )  /\  ( X `  ( 1r `  Z ) )  =  1 )  /\  X : B --> CC ) ) )
103102pm5.32da 646 . . 3  |-  ( ph  ->  ( ( A. x  e.  B  ( ( X `  x )  =/=  0  ->  x  e.  U )  /\  X  e.  ( (mulGrp `  Z
) MndHom  (mulGrp ` fld ) ) )  <->  ( A. x  e.  B  (
( X `  x
)  =/=  0  ->  x  e.  U )  /\  ( ( A. x  e.  U  A. y  e.  U  ( X `  ( x ( .r
`  Z ) y ) )  =  ( ( X `  x
)  x.  ( X `
 y ) )  /\  ( X `  ( 1r `  Z ) )  =  1 )  /\  X : B --> CC ) ) ) )
104 ancom 452 . . 3  |-  ( ( X  e.  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld )
)  /\  A. x  e.  B  ( ( X `  x )  =/=  0  ->  x  e.  U ) )  <->  ( A. x  e.  B  (
( X `  x
)  =/=  0  ->  x  e.  U )  /\  X  e.  (
(mulGrp `  Z ) MndHom  (mulGrp ` fld ) ) ) )
105 df-3an 986 . . . . 5  |-  ( ( A. x  e.  U  A. y  e.  U  ( X `  ( x ( .r `  Z
) y ) )  =  ( ( X `
 x )  x.  ( X `  y
) )  /\  ( X `  ( 1r `  Z ) )  =  1  /\  A. x  e.  B  ( ( X `  x )  =/=  0  ->  x  e.  U ) )  <->  ( ( A. x  e.  U  A. y  e.  U  ( X `  ( x ( .r `  Z
) y ) )  =  ( ( X `
 x )  x.  ( X `  y
) )  /\  ( X `  ( 1r `  Z ) )  =  1 )  /\  A. x  e.  B  (
( X `  x
)  =/=  0  ->  x  e.  U )
) )
106105anbi2i 699 . . . 4  |-  ( ( X : B --> CC  /\  ( A. x  e.  U  A. y  e.  U  ( X `  ( x ( .r `  Z
) y ) )  =  ( ( X `
 x )  x.  ( X `  y
) )  /\  ( X `  ( 1r `  Z ) )  =  1  /\  A. x  e.  B  ( ( X `  x )  =/=  0  ->  x  e.  U ) ) )  <-> 
( X : B --> CC  /\  ( ( A. x  e.  U  A. y  e.  U  ( X `  ( x
( .r `  Z
) y ) )  =  ( ( X `
 x )  x.  ( X `  y
) )  /\  ( X `  ( 1r `  Z ) )  =  1 )  /\  A. x  e.  B  (
( X `  x
)  =/=  0  ->  x  e.  U )
) ) )
107 an13 807 . . . 4  |-  ( ( X : B --> CC  /\  ( ( A. x  e.  U  A. y  e.  U  ( X `  ( x ( .r
`  Z ) y ) )  =  ( ( X `  x
)  x.  ( X `
 y ) )  /\  ( X `  ( 1r `  Z ) )  =  1 )  /\  A. x  e.  B  ( ( X `
 x )  =/=  0  ->  x  e.  U ) ) )  <-> 
( A. x  e.  B  ( ( X `
 x )  =/=  0  ->  x  e.  U )  /\  (
( A. x  e.  U  A. y  e.  U  ( X `  ( x ( .r
`  Z ) y ) )  =  ( ( X `  x
)  x.  ( X `
 y ) )  /\  ( X `  ( 1r `  Z ) )  =  1 )  /\  X : B --> CC ) ) )
108106, 107bitri 253 . . 3  |-  ( ( X : B --> CC  /\  ( A. x  e.  U  A. y  e.  U  ( X `  ( x ( .r `  Z
) y ) )  =  ( ( X `
 x )  x.  ( X `  y
) )  /\  ( X `  ( 1r `  Z ) )  =  1  /\  A. x  e.  B  ( ( X `  x )  =/=  0  ->  x  e.  U ) ) )  <-> 
( A. x  e.  B  ( ( X `
 x )  =/=  0  ->  x  e.  U )  /\  (
( A. x  e.  U  A. y  e.  U  ( X `  ( x ( .r
`  Z ) y ) )  =  ( ( X `  x
)  x.  ( X `
 y ) )  /\  ( X `  ( 1r `  Z ) )  =  1 )  /\  X : B --> CC ) ) )
109103, 104, 1083bitr4g 292 . 2  |-  ( ph  ->  ( ( X  e.  ( (mulGrp `  Z
) MndHom  (mulGrp ` fld ) )  /\  A. x  e.  B  (
( X `  x
)  =/=  0  ->  x  e.  U )
)  <->  ( X : B
--> CC  /\  ( A. x  e.  U  A. y  e.  U  ( X `  ( x
( .r `  Z
) y ) )  =  ( ( X `
 x )  x.  ( X `  y
) )  /\  ( X `  ( 1r `  Z ) )  =  1  /\  A. x  e.  B  ( ( X `  x )  =/=  0  ->  x  e.  U ) ) ) ) )
1107, 109bitrd 257 1  |-  ( ph  ->  ( X  e.  D  <->  ( X : B --> CC  /\  ( A. x  e.  U  A. y  e.  U  ( X `  ( x ( .r `  Z
) y ) )  =  ( ( X `
 x )  x.  ( X `  y
) )  /\  ( X `  ( 1r `  Z ) )  =  1  /\  A. x  e.  B  ( ( X `  x )  =/=  0  ->  x  e.  U ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 188    \/ wo 370    /\ wa 371    /\ w3a 984   A.wal 1441    = wceq 1443    e. wcel 1886    =/= wne 2621   A.wral 2736   -->wf 5577   ` cfv 5581  (class class class)co 6288   CCcc 9534   0cc0 9536   1c1 9537    x. cmul 9541   NNcn 10606   NN0cn0 10866   Basecbs 15114   .rcmulr 15184   Mndcmnd 16528   MndHom cmhm 16573  mulGrpcmgp 17716   1rcur 17728   Ringcrg 17773   CRingccrg 17774  Unitcui 17860  ℂfldccnfld 18963  ℤ/nczn 19067  DChrcdchr 24153
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1668  ax-4 1681  ax-5 1757  ax-6 1804  ax-7 1850  ax-8 1888  ax-9 1895  ax-10 1914  ax-11 1919  ax-12 1932  ax-13 2090  ax-ext 2430  ax-rep 4514  ax-sep 4524  ax-nul 4533  ax-pow 4580  ax-pr 4638  ax-un 6580  ax-cnex 9592  ax-resscn 9593  ax-1cn 9594  ax-icn 9595  ax-addcl 9596  ax-addrcl 9597  ax-mulcl 9598  ax-mulrcl 9599  ax-mulcom 9600  ax-addass 9601  ax-mulass 9602  ax-distr 9603  ax-i2m1 9604  ax-1ne0 9605  ax-1rid 9606  ax-rnegex 9607  ax-rrecex 9608  ax-cnre 9609  ax-pre-lttri 9610  ax-pre-lttrn 9611  ax-pre-ltadd 9612  ax-pre-mulgt0 9613  ax-addf 9615  ax-mulf 9616
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 985  df-3an 986  df-tru 1446  df-ex 1663  df-nf 1667  df-sb 1797  df-eu 2302  df-mo 2303  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2580  df-ne 2623  df-nel 2624  df-ral 2741  df-rex 2742  df-reu 2743  df-rmo 2744  df-rab 2745  df-v 3046  df-sbc 3267  df-csb 3363  df-dif 3406  df-un 3408  df-in 3410  df-ss 3417  df-pss 3419  df-nul 3731  df-if 3881  df-pw 3952  df-sn 3968  df-pr 3970  df-tp 3972  df-op 3974  df-uni 4198  df-int 4234  df-iun 4279  df-br 4402  df-opab 4461  df-mpt 4462  df-tr 4497  df-eprel 4744  df-id 4748  df-po 4754  df-so 4755  df-fr 4792  df-we 4794  df-xp 4839  df-rel 4840  df-cnv 4841  df-co 4842  df-dm 4843  df-rn 4844  df-res 4845  df-ima 4846  df-pred 5379  df-ord 5425  df-on 5426  df-lim 5427  df-suc 5428  df-iota 5545  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586  df-fo 5587  df-f1o 5588  df-fv 5589  df-riota 6250  df-ov 6291  df-oprab 6292  df-mpt2 6293  df-om 6690  df-1st 6790  df-2nd 6791  df-tpos 6970  df-wrecs 7025  df-recs 7087  df-rdg 7125  df-1o 7179  df-oadd 7183  df-er 7360  df-ec 7362  df-qs 7366  df-map 7471  df-en 7567  df-dom 7568  df-sdom 7569  df-fin 7570  df-sup 7953  df-inf 7954  df-pnf 9674  df-mnf 9675  df-xr 9676  df-ltxr 9677  df-le 9678  df-sub 9859  df-neg 9860  df-nn 10607  df-2 10665  df-3 10666  df-4 10667  df-5 10668  df-6 10669  df-7 10670  df-8 10671  df-9 10672  df-10 10673  df-n0 10867  df-z 10935  df-dec 11049  df-uz 11157  df-fz 11782  df-struct 15116  df-ndx 15117  df-slot 15118  df-base 15119  df-sets 15120  df-ress 15121  df-plusg 15196  df-mulr 15197  df-starv 15198  df-sca 15199  df-vsca 15200  df-ip 15201  df-tset 15202  df-ple 15203  df-ds 15205  df-unif 15206  df-0g 15333  df-imas 15400  df-qus 15402  df-mgm 16481  df-sgrp 16520  df-mnd 16530  df-mhm 16575  df-grp 16666  df-minusg 16667  df-sbg 16668  df-subg 16807  df-nsg 16808  df-eqg 16809  df-cmn 17425  df-abl 17426  df-mgp 17717  df-ur 17729  df-ring 17775  df-cring 17776  df-oppr 17844  df-dvdsr 17862  df-unit 17863  df-subrg 17999  df-lmod 18086  df-lss 18149  df-lsp 18188  df-sra 18388  df-rgmod 18389  df-lidl 18390  df-rsp 18391  df-2idl 18449  df-cnfld 18964  df-zring 19033  df-zn 19071  df-dchr 24154
This theorem is referenced by:  dchrelbasd  24160  dchrf  24163  dchrmulcl  24170  dchrinv  24182  lgsdchr  24269
  Copyright terms: Public domain W3C validator