Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > con2bii | Structured version Visualization version GIF version |
Description: A contraposition inference. (Contributed by NM, 12-Mar-1993.) |
Ref | Expression |
---|---|
con2bii.1 | ⊢ (𝜑 ↔ ¬ 𝜓) |
Ref | Expression |
---|---|
con2bii | ⊢ (𝜓 ↔ ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | con2bii.1 | . . . 4 ⊢ (𝜑 ↔ ¬ 𝜓) | |
2 | 1 | bicomi 213 | . . 3 ⊢ (¬ 𝜓 ↔ 𝜑) |
3 | 2 | con1bii 345 | . 2 ⊢ (¬ 𝜑 ↔ 𝜓) |
4 | 3 | bicomi 213 | 1 ⊢ (𝜓 ↔ ¬ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 195 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 196 |
This theorem is referenced by: xor3 371 imnan 437 annim 440 anor 509 pm4.53 512 pm4.55 514 oran 516 3ianor 1048 nanan 1441 xnor 1458 xorneg 1468 alnex 1697 exnal 1744 2exnexn 1761 equs3 1862 19.3v 1884 nne 2786 rexnal 2978 dfrex2 2979 r2exlem 3041 r19.35 3065 ddif 3704 dfun2 3821 dfin2 3822 difin 3823 dfnul2 3876 rab0OLD 3910 disj4 3977 snnzb 4198 onuninsuci 6932 omopthi 7624 dfsup2 8233 rankxplim3 8627 alephgeom 8788 fin1a2lem7 9111 fin41 9149 reclem2pr 9749 1re 9918 ltnlei 10037 divalglem8 14961 f1omvdco3 17692 elcls 20687 ist1-2 20961 fin1aufil 21546 dchrelbas3 24763 tgdim01 25202 axcontlem12 25655 avril1 26711 dftr6 30893 sltval2 31053 sltres 31061 nodenselem4 31083 nodenselem7 31086 nofulllem5 31105 dfon3 31169 dffun10 31191 brub 31231 bj-exnalimn 31797 bj-modal4e 31892 con2bii2 32356 heiborlem1 32780 heiborlem6 32785 heiborlem8 32787 cdleme0nex 34595 wopprc 36615 1nevenALTV 40140 |
Copyright terms: Public domain | W3C validator |