MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omopthi Structured version   Visualization version   GIF version

Theorem omopthi 7624
Description: An ordered pair theorem for ω. Theorem 17.3 of [Quine] p. 124. This proof is adapted from nn0opthi 12919. (Contributed by Scott Fenton, 16-Apr-2012.) (Revised by Mario Carneiro, 17-Nov-2014.)
Hypotheses
Ref Expression
omopth.1 𝐴 ∈ ω
omopth.2 𝐵 ∈ ω
omopth.3 𝐶 ∈ ω
omopth.4 𝐷 ∈ ω
Assertion
Ref Expression
omopthi ((((𝐴 +𝑜 𝐵) ·𝑜 (𝐴 +𝑜 𝐵)) +𝑜 𝐵) = (((𝐶 +𝑜 𝐷) ·𝑜 (𝐶 +𝑜 𝐷)) +𝑜 𝐷) ↔ (𝐴 = 𝐶𝐵 = 𝐷))

Proof of Theorem omopthi
StepHypRef Expression
1 omopth.1 . . . . . . . . . . . . 13 𝐴 ∈ ω
2 omopth.2 . . . . . . . . . . . . 13 𝐵 ∈ ω
31, 2nnacli 7581 . . . . . . . . . . . 12 (𝐴 +𝑜 𝐵) ∈ ω
43nnoni 6964 . . . . . . . . . . 11 (𝐴 +𝑜 𝐵) ∈ On
54onordi 5749 . . . . . . . . . 10 Ord (𝐴 +𝑜 𝐵)
6 omopth.3 . . . . . . . . . . . . 13 𝐶 ∈ ω
7 omopth.4 . . . . . . . . . . . . 13 𝐷 ∈ ω
86, 7nnacli 7581 . . . . . . . . . . . 12 (𝐶 +𝑜 𝐷) ∈ ω
98nnoni 6964 . . . . . . . . . . 11 (𝐶 +𝑜 𝐷) ∈ On
109onordi 5749 . . . . . . . . . 10 Ord (𝐶 +𝑜 𝐷)
11 ordtri3 5676 . . . . . . . . . 10 ((Ord (𝐴 +𝑜 𝐵) ∧ Ord (𝐶 +𝑜 𝐷)) → ((𝐴 +𝑜 𝐵) = (𝐶 +𝑜 𝐷) ↔ ¬ ((𝐴 +𝑜 𝐵) ∈ (𝐶 +𝑜 𝐷) ∨ (𝐶 +𝑜 𝐷) ∈ (𝐴 +𝑜 𝐵))))
125, 10, 11mp2an 704 . . . . . . . . 9 ((𝐴 +𝑜 𝐵) = (𝐶 +𝑜 𝐷) ↔ ¬ ((𝐴 +𝑜 𝐵) ∈ (𝐶 +𝑜 𝐷) ∨ (𝐶 +𝑜 𝐷) ∈ (𝐴 +𝑜 𝐵)))
1312con2bii 346 . . . . . . . 8 (((𝐴 +𝑜 𝐵) ∈ (𝐶 +𝑜 𝐷) ∨ (𝐶 +𝑜 𝐷) ∈ (𝐴 +𝑜 𝐵)) ↔ ¬ (𝐴 +𝑜 𝐵) = (𝐶 +𝑜 𝐷))
141, 2, 8, 7omopthlem2 7623 . . . . . . . . . 10 ((𝐴 +𝑜 𝐵) ∈ (𝐶 +𝑜 𝐷) → ¬ (((𝐶 +𝑜 𝐷) ·𝑜 (𝐶 +𝑜 𝐷)) +𝑜 𝐷) = (((𝐴 +𝑜 𝐵) ·𝑜 (𝐴 +𝑜 𝐵)) +𝑜 𝐵))
15 eqcom 2617 . . . . . . . . . 10 ((((𝐶 +𝑜 𝐷) ·𝑜 (𝐶 +𝑜 𝐷)) +𝑜 𝐷) = (((𝐴 +𝑜 𝐵) ·𝑜 (𝐴 +𝑜 𝐵)) +𝑜 𝐵) ↔ (((𝐴 +𝑜 𝐵) ·𝑜 (𝐴 +𝑜 𝐵)) +𝑜 𝐵) = (((𝐶 +𝑜 𝐷) ·𝑜 (𝐶 +𝑜 𝐷)) +𝑜 𝐷))
1614, 15sylnib 317 . . . . . . . . 9 ((𝐴 +𝑜 𝐵) ∈ (𝐶 +𝑜 𝐷) → ¬ (((𝐴 +𝑜 𝐵) ·𝑜 (𝐴 +𝑜 𝐵)) +𝑜 𝐵) = (((𝐶 +𝑜 𝐷) ·𝑜 (𝐶 +𝑜 𝐷)) +𝑜 𝐷))
176, 7, 3, 2omopthlem2 7623 . . . . . . . . 9 ((𝐶 +𝑜 𝐷) ∈ (𝐴 +𝑜 𝐵) → ¬ (((𝐴 +𝑜 𝐵) ·𝑜 (𝐴 +𝑜 𝐵)) +𝑜 𝐵) = (((𝐶 +𝑜 𝐷) ·𝑜 (𝐶 +𝑜 𝐷)) +𝑜 𝐷))
1816, 17jaoi 393 . . . . . . . 8 (((𝐴 +𝑜 𝐵) ∈ (𝐶 +𝑜 𝐷) ∨ (𝐶 +𝑜 𝐷) ∈ (𝐴 +𝑜 𝐵)) → ¬ (((𝐴 +𝑜 𝐵) ·𝑜 (𝐴 +𝑜 𝐵)) +𝑜 𝐵) = (((𝐶 +𝑜 𝐷) ·𝑜 (𝐶 +𝑜 𝐷)) +𝑜 𝐷))
1913, 18sylbir 224 . . . . . . 7 (¬ (𝐴 +𝑜 𝐵) = (𝐶 +𝑜 𝐷) → ¬ (((𝐴 +𝑜 𝐵) ·𝑜 (𝐴 +𝑜 𝐵)) +𝑜 𝐵) = (((𝐶 +𝑜 𝐷) ·𝑜 (𝐶 +𝑜 𝐷)) +𝑜 𝐷))
2019con4i 112 . . . . . 6 ((((𝐴 +𝑜 𝐵) ·𝑜 (𝐴 +𝑜 𝐵)) +𝑜 𝐵) = (((𝐶 +𝑜 𝐷) ·𝑜 (𝐶 +𝑜 𝐷)) +𝑜 𝐷) → (𝐴 +𝑜 𝐵) = (𝐶 +𝑜 𝐷))
21 id 22 . . . . . . . . 9 ((((𝐴 +𝑜 𝐵) ·𝑜 (𝐴 +𝑜 𝐵)) +𝑜 𝐵) = (((𝐶 +𝑜 𝐷) ·𝑜 (𝐶 +𝑜 𝐷)) +𝑜 𝐷) → (((𝐴 +𝑜 𝐵) ·𝑜 (𝐴 +𝑜 𝐵)) +𝑜 𝐵) = (((𝐶 +𝑜 𝐷) ·𝑜 (𝐶 +𝑜 𝐷)) +𝑜 𝐷))
2220, 20oveq12d 6567 . . . . . . . . . 10 ((((𝐴 +𝑜 𝐵) ·𝑜 (𝐴 +𝑜 𝐵)) +𝑜 𝐵) = (((𝐶 +𝑜 𝐷) ·𝑜 (𝐶 +𝑜 𝐷)) +𝑜 𝐷) → ((𝐴 +𝑜 𝐵) ·𝑜 (𝐴 +𝑜 𝐵)) = ((𝐶 +𝑜 𝐷) ·𝑜 (𝐶 +𝑜 𝐷)))
2322oveq1d 6564 . . . . . . . . 9 ((((𝐴 +𝑜 𝐵) ·𝑜 (𝐴 +𝑜 𝐵)) +𝑜 𝐵) = (((𝐶 +𝑜 𝐷) ·𝑜 (𝐶 +𝑜 𝐷)) +𝑜 𝐷) → (((𝐴 +𝑜 𝐵) ·𝑜 (𝐴 +𝑜 𝐵)) +𝑜 𝐷) = (((𝐶 +𝑜 𝐷) ·𝑜 (𝐶 +𝑜 𝐷)) +𝑜 𝐷))
2421, 23eqtr4d 2647 . . . . . . . 8 ((((𝐴 +𝑜 𝐵) ·𝑜 (𝐴 +𝑜 𝐵)) +𝑜 𝐵) = (((𝐶 +𝑜 𝐷) ·𝑜 (𝐶 +𝑜 𝐷)) +𝑜 𝐷) → (((𝐴 +𝑜 𝐵) ·𝑜 (𝐴 +𝑜 𝐵)) +𝑜 𝐵) = (((𝐴 +𝑜 𝐵) ·𝑜 (𝐴 +𝑜 𝐵)) +𝑜 𝐷))
253, 3nnmcli 7582 . . . . . . . . 9 ((𝐴 +𝑜 𝐵) ·𝑜 (𝐴 +𝑜 𝐵)) ∈ ω
26 nnacan 7595 . . . . . . . . 9 ((((𝐴 +𝑜 𝐵) ·𝑜 (𝐴 +𝑜 𝐵)) ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐷 ∈ ω) → ((((𝐴 +𝑜 𝐵) ·𝑜 (𝐴 +𝑜 𝐵)) +𝑜 𝐵) = (((𝐴 +𝑜 𝐵) ·𝑜 (𝐴 +𝑜 𝐵)) +𝑜 𝐷) ↔ 𝐵 = 𝐷))
2725, 2, 7, 26mp3an 1416 . . . . . . . 8 ((((𝐴 +𝑜 𝐵) ·𝑜 (𝐴 +𝑜 𝐵)) +𝑜 𝐵) = (((𝐴 +𝑜 𝐵) ·𝑜 (𝐴 +𝑜 𝐵)) +𝑜 𝐷) ↔ 𝐵 = 𝐷)
2824, 27sylib 207 . . . . . . 7 ((((𝐴 +𝑜 𝐵) ·𝑜 (𝐴 +𝑜 𝐵)) +𝑜 𝐵) = (((𝐶 +𝑜 𝐷) ·𝑜 (𝐶 +𝑜 𝐷)) +𝑜 𝐷) → 𝐵 = 𝐷)
2928oveq2d 6565 . . . . . 6 ((((𝐴 +𝑜 𝐵) ·𝑜 (𝐴 +𝑜 𝐵)) +𝑜 𝐵) = (((𝐶 +𝑜 𝐷) ·𝑜 (𝐶 +𝑜 𝐷)) +𝑜 𝐷) → (𝐶 +𝑜 𝐵) = (𝐶 +𝑜 𝐷))
3020, 29eqtr4d 2647 . . . . 5 ((((𝐴 +𝑜 𝐵) ·𝑜 (𝐴 +𝑜 𝐵)) +𝑜 𝐵) = (((𝐶 +𝑜 𝐷) ·𝑜 (𝐶 +𝑜 𝐷)) +𝑜 𝐷) → (𝐴 +𝑜 𝐵) = (𝐶 +𝑜 𝐵))
31 nnacom 7584 . . . . . 6 ((𝐵 ∈ ω ∧ 𝐴 ∈ ω) → (𝐵 +𝑜 𝐴) = (𝐴 +𝑜 𝐵))
322, 1, 31mp2an 704 . . . . 5 (𝐵 +𝑜 𝐴) = (𝐴 +𝑜 𝐵)
33 nnacom 7584 . . . . . 6 ((𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐵 +𝑜 𝐶) = (𝐶 +𝑜 𝐵))
342, 6, 33mp2an 704 . . . . 5 (𝐵 +𝑜 𝐶) = (𝐶 +𝑜 𝐵)
3530, 32, 343eqtr4g 2669 . . . 4 ((((𝐴 +𝑜 𝐵) ·𝑜 (𝐴 +𝑜 𝐵)) +𝑜 𝐵) = (((𝐶 +𝑜 𝐷) ·𝑜 (𝐶 +𝑜 𝐷)) +𝑜 𝐷) → (𝐵 +𝑜 𝐴) = (𝐵 +𝑜 𝐶))
36 nnacan 7595 . . . . 5 ((𝐵 ∈ ω ∧ 𝐴 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐵 +𝑜 𝐴) = (𝐵 +𝑜 𝐶) ↔ 𝐴 = 𝐶))
372, 1, 6, 36mp3an 1416 . . . 4 ((𝐵 +𝑜 𝐴) = (𝐵 +𝑜 𝐶) ↔ 𝐴 = 𝐶)
3835, 37sylib 207 . . 3 ((((𝐴 +𝑜 𝐵) ·𝑜 (𝐴 +𝑜 𝐵)) +𝑜 𝐵) = (((𝐶 +𝑜 𝐷) ·𝑜 (𝐶 +𝑜 𝐷)) +𝑜 𝐷) → 𝐴 = 𝐶)
3938, 28jca 553 . 2 ((((𝐴 +𝑜 𝐵) ·𝑜 (𝐴 +𝑜 𝐵)) +𝑜 𝐵) = (((𝐶 +𝑜 𝐷) ·𝑜 (𝐶 +𝑜 𝐷)) +𝑜 𝐷) → (𝐴 = 𝐶𝐵 = 𝐷))
40 oveq12 6558 . . . 4 ((𝐴 = 𝐶𝐵 = 𝐷) → (𝐴 +𝑜 𝐵) = (𝐶 +𝑜 𝐷))
4140, 40oveq12d 6567 . . 3 ((𝐴 = 𝐶𝐵 = 𝐷) → ((𝐴 +𝑜 𝐵) ·𝑜 (𝐴 +𝑜 𝐵)) = ((𝐶 +𝑜 𝐷) ·𝑜 (𝐶 +𝑜 𝐷)))
42 simpr 476 . . 3 ((𝐴 = 𝐶𝐵 = 𝐷) → 𝐵 = 𝐷)
4341, 42oveq12d 6567 . 2 ((𝐴 = 𝐶𝐵 = 𝐷) → (((𝐴 +𝑜 𝐵) ·𝑜 (𝐴 +𝑜 𝐵)) +𝑜 𝐵) = (((𝐶 +𝑜 𝐷) ·𝑜 (𝐶 +𝑜 𝐷)) +𝑜 𝐷))
4439, 43impbii 198 1 ((((𝐴 +𝑜 𝐵) ·𝑜 (𝐴 +𝑜 𝐵)) +𝑜 𝐵) = (((𝐶 +𝑜 𝐷) ·𝑜 (𝐶 +𝑜 𝐷)) +𝑜 𝐷) ↔ (𝐴 = 𝐶𝐵 = 𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 195  wo 382  wa 383   = wceq 1475  wcel 1977  Ord word 5639  (class class class)co 6549  ωcom 6957   +𝑜 coa 7444   ·𝑜 comu 7445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-omul 7452
This theorem is referenced by:  omopth  7625
  Copyright terms: Public domain W3C validator