MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omopth Structured version   Visualization version   GIF version

Theorem omopth 7625
Description: An ordered pair theorem for finite integers. Analogous to nn0opthi 12919. (Contributed by Scott Fenton, 1-May-2012.)
Assertion
Ref Expression
omopth (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐶 ∈ ω ∧ 𝐷 ∈ ω)) → ((((𝐴 +𝑜 𝐵) ·𝑜 (𝐴 +𝑜 𝐵)) +𝑜 𝐵) = (((𝐶 +𝑜 𝐷) ·𝑜 (𝐶 +𝑜 𝐷)) +𝑜 𝐷) ↔ (𝐴 = 𝐶𝐵 = 𝐷)))

Proof of Theorem omopth
StepHypRef Expression
1 oveq1 6556 . . . . . 6 (𝐴 = if(𝐴 ∈ ω, 𝐴, ∅) → (𝐴 +𝑜 𝐵) = (if(𝐴 ∈ ω, 𝐴, ∅) +𝑜 𝐵))
21, 1oveq12d 6567 . . . . 5 (𝐴 = if(𝐴 ∈ ω, 𝐴, ∅) → ((𝐴 +𝑜 𝐵) ·𝑜 (𝐴 +𝑜 𝐵)) = ((if(𝐴 ∈ ω, 𝐴, ∅) +𝑜 𝐵) ·𝑜 (if(𝐴 ∈ ω, 𝐴, ∅) +𝑜 𝐵)))
32oveq1d 6564 . . . 4 (𝐴 = if(𝐴 ∈ ω, 𝐴, ∅) → (((𝐴 +𝑜 𝐵) ·𝑜 (𝐴 +𝑜 𝐵)) +𝑜 𝐵) = (((if(𝐴 ∈ ω, 𝐴, ∅) +𝑜 𝐵) ·𝑜 (if(𝐴 ∈ ω, 𝐴, ∅) +𝑜 𝐵)) +𝑜 𝐵))
43eqeq1d 2612 . . 3 (𝐴 = if(𝐴 ∈ ω, 𝐴, ∅) → ((((𝐴 +𝑜 𝐵) ·𝑜 (𝐴 +𝑜 𝐵)) +𝑜 𝐵) = (((𝐶 +𝑜 𝐷) ·𝑜 (𝐶 +𝑜 𝐷)) +𝑜 𝐷) ↔ (((if(𝐴 ∈ ω, 𝐴, ∅) +𝑜 𝐵) ·𝑜 (if(𝐴 ∈ ω, 𝐴, ∅) +𝑜 𝐵)) +𝑜 𝐵) = (((𝐶 +𝑜 𝐷) ·𝑜 (𝐶 +𝑜 𝐷)) +𝑜 𝐷)))
5 eqeq1 2614 . . . 4 (𝐴 = if(𝐴 ∈ ω, 𝐴, ∅) → (𝐴 = 𝐶 ↔ if(𝐴 ∈ ω, 𝐴, ∅) = 𝐶))
65anbi1d 737 . . 3 (𝐴 = if(𝐴 ∈ ω, 𝐴, ∅) → ((𝐴 = 𝐶𝐵 = 𝐷) ↔ (if(𝐴 ∈ ω, 𝐴, ∅) = 𝐶𝐵 = 𝐷)))
74, 6bibi12d 334 . 2 (𝐴 = if(𝐴 ∈ ω, 𝐴, ∅) → (((((𝐴 +𝑜 𝐵) ·𝑜 (𝐴 +𝑜 𝐵)) +𝑜 𝐵) = (((𝐶 +𝑜 𝐷) ·𝑜 (𝐶 +𝑜 𝐷)) +𝑜 𝐷) ↔ (𝐴 = 𝐶𝐵 = 𝐷)) ↔ ((((if(𝐴 ∈ ω, 𝐴, ∅) +𝑜 𝐵) ·𝑜 (if(𝐴 ∈ ω, 𝐴, ∅) +𝑜 𝐵)) +𝑜 𝐵) = (((𝐶 +𝑜 𝐷) ·𝑜 (𝐶 +𝑜 𝐷)) +𝑜 𝐷) ↔ (if(𝐴 ∈ ω, 𝐴, ∅) = 𝐶𝐵 = 𝐷))))
8 oveq2 6557 . . . . . 6 (𝐵 = if(𝐵 ∈ ω, 𝐵, ∅) → (if(𝐴 ∈ ω, 𝐴, ∅) +𝑜 𝐵) = (if(𝐴 ∈ ω, 𝐴, ∅) +𝑜 if(𝐵 ∈ ω, 𝐵, ∅)))
98, 8oveq12d 6567 . . . . 5 (𝐵 = if(𝐵 ∈ ω, 𝐵, ∅) → ((if(𝐴 ∈ ω, 𝐴, ∅) +𝑜 𝐵) ·𝑜 (if(𝐴 ∈ ω, 𝐴, ∅) +𝑜 𝐵)) = ((if(𝐴 ∈ ω, 𝐴, ∅) +𝑜 if(𝐵 ∈ ω, 𝐵, ∅)) ·𝑜 (if(𝐴 ∈ ω, 𝐴, ∅) +𝑜 if(𝐵 ∈ ω, 𝐵, ∅))))
10 id 22 . . . . 5 (𝐵 = if(𝐵 ∈ ω, 𝐵, ∅) → 𝐵 = if(𝐵 ∈ ω, 𝐵, ∅))
119, 10oveq12d 6567 . . . 4 (𝐵 = if(𝐵 ∈ ω, 𝐵, ∅) → (((if(𝐴 ∈ ω, 𝐴, ∅) +𝑜 𝐵) ·𝑜 (if(𝐴 ∈ ω, 𝐴, ∅) +𝑜 𝐵)) +𝑜 𝐵) = (((if(𝐴 ∈ ω, 𝐴, ∅) +𝑜 if(𝐵 ∈ ω, 𝐵, ∅)) ·𝑜 (if(𝐴 ∈ ω, 𝐴, ∅) +𝑜 if(𝐵 ∈ ω, 𝐵, ∅))) +𝑜 if(𝐵 ∈ ω, 𝐵, ∅)))
1211eqeq1d 2612 . . 3 (𝐵 = if(𝐵 ∈ ω, 𝐵, ∅) → ((((if(𝐴 ∈ ω, 𝐴, ∅) +𝑜 𝐵) ·𝑜 (if(𝐴 ∈ ω, 𝐴, ∅) +𝑜 𝐵)) +𝑜 𝐵) = (((𝐶 +𝑜 𝐷) ·𝑜 (𝐶 +𝑜 𝐷)) +𝑜 𝐷) ↔ (((if(𝐴 ∈ ω, 𝐴, ∅) +𝑜 if(𝐵 ∈ ω, 𝐵, ∅)) ·𝑜 (if(𝐴 ∈ ω, 𝐴, ∅) +𝑜 if(𝐵 ∈ ω, 𝐵, ∅))) +𝑜 if(𝐵 ∈ ω, 𝐵, ∅)) = (((𝐶 +𝑜 𝐷) ·𝑜 (𝐶 +𝑜 𝐷)) +𝑜 𝐷)))
13 eqeq1 2614 . . . 4 (𝐵 = if(𝐵 ∈ ω, 𝐵, ∅) → (𝐵 = 𝐷 ↔ if(𝐵 ∈ ω, 𝐵, ∅) = 𝐷))
1413anbi2d 736 . . 3 (𝐵 = if(𝐵 ∈ ω, 𝐵, ∅) → ((if(𝐴 ∈ ω, 𝐴, ∅) = 𝐶𝐵 = 𝐷) ↔ (if(𝐴 ∈ ω, 𝐴, ∅) = 𝐶 ∧ if(𝐵 ∈ ω, 𝐵, ∅) = 𝐷)))
1512, 14bibi12d 334 . 2 (𝐵 = if(𝐵 ∈ ω, 𝐵, ∅) → (((((if(𝐴 ∈ ω, 𝐴, ∅) +𝑜 𝐵) ·𝑜 (if(𝐴 ∈ ω, 𝐴, ∅) +𝑜 𝐵)) +𝑜 𝐵) = (((𝐶 +𝑜 𝐷) ·𝑜 (𝐶 +𝑜 𝐷)) +𝑜 𝐷) ↔ (if(𝐴 ∈ ω, 𝐴, ∅) = 𝐶𝐵 = 𝐷)) ↔ ((((if(𝐴 ∈ ω, 𝐴, ∅) +𝑜 if(𝐵 ∈ ω, 𝐵, ∅)) ·𝑜 (if(𝐴 ∈ ω, 𝐴, ∅) +𝑜 if(𝐵 ∈ ω, 𝐵, ∅))) +𝑜 if(𝐵 ∈ ω, 𝐵, ∅)) = (((𝐶 +𝑜 𝐷) ·𝑜 (𝐶 +𝑜 𝐷)) +𝑜 𝐷) ↔ (if(𝐴 ∈ ω, 𝐴, ∅) = 𝐶 ∧ if(𝐵 ∈ ω, 𝐵, ∅) = 𝐷))))
16 oveq1 6556 . . . . . 6 (𝐶 = if(𝐶 ∈ ω, 𝐶, ∅) → (𝐶 +𝑜 𝐷) = (if(𝐶 ∈ ω, 𝐶, ∅) +𝑜 𝐷))
1716, 16oveq12d 6567 . . . . 5 (𝐶 = if(𝐶 ∈ ω, 𝐶, ∅) → ((𝐶 +𝑜 𝐷) ·𝑜 (𝐶 +𝑜 𝐷)) = ((if(𝐶 ∈ ω, 𝐶, ∅) +𝑜 𝐷) ·𝑜 (if(𝐶 ∈ ω, 𝐶, ∅) +𝑜 𝐷)))
1817oveq1d 6564 . . . 4 (𝐶 = if(𝐶 ∈ ω, 𝐶, ∅) → (((𝐶 +𝑜 𝐷) ·𝑜 (𝐶 +𝑜 𝐷)) +𝑜 𝐷) = (((if(𝐶 ∈ ω, 𝐶, ∅) +𝑜 𝐷) ·𝑜 (if(𝐶 ∈ ω, 𝐶, ∅) +𝑜 𝐷)) +𝑜 𝐷))
1918eqeq2d 2620 . . 3 (𝐶 = if(𝐶 ∈ ω, 𝐶, ∅) → ((((if(𝐴 ∈ ω, 𝐴, ∅) +𝑜 if(𝐵 ∈ ω, 𝐵, ∅)) ·𝑜 (if(𝐴 ∈ ω, 𝐴, ∅) +𝑜 if(𝐵 ∈ ω, 𝐵, ∅))) +𝑜 if(𝐵 ∈ ω, 𝐵, ∅)) = (((𝐶 +𝑜 𝐷) ·𝑜 (𝐶 +𝑜 𝐷)) +𝑜 𝐷) ↔ (((if(𝐴 ∈ ω, 𝐴, ∅) +𝑜 if(𝐵 ∈ ω, 𝐵, ∅)) ·𝑜 (if(𝐴 ∈ ω, 𝐴, ∅) +𝑜 if(𝐵 ∈ ω, 𝐵, ∅))) +𝑜 if(𝐵 ∈ ω, 𝐵, ∅)) = (((if(𝐶 ∈ ω, 𝐶, ∅) +𝑜 𝐷) ·𝑜 (if(𝐶 ∈ ω, 𝐶, ∅) +𝑜 𝐷)) +𝑜 𝐷)))
20 eqeq2 2621 . . . 4 (𝐶 = if(𝐶 ∈ ω, 𝐶, ∅) → (if(𝐴 ∈ ω, 𝐴, ∅) = 𝐶 ↔ if(𝐴 ∈ ω, 𝐴, ∅) = if(𝐶 ∈ ω, 𝐶, ∅)))
2120anbi1d 737 . . 3 (𝐶 = if(𝐶 ∈ ω, 𝐶, ∅) → ((if(𝐴 ∈ ω, 𝐴, ∅) = 𝐶 ∧ if(𝐵 ∈ ω, 𝐵, ∅) = 𝐷) ↔ (if(𝐴 ∈ ω, 𝐴, ∅) = if(𝐶 ∈ ω, 𝐶, ∅) ∧ if(𝐵 ∈ ω, 𝐵, ∅) = 𝐷)))
2219, 21bibi12d 334 . 2 (𝐶 = if(𝐶 ∈ ω, 𝐶, ∅) → (((((if(𝐴 ∈ ω, 𝐴, ∅) +𝑜 if(𝐵 ∈ ω, 𝐵, ∅)) ·𝑜 (if(𝐴 ∈ ω, 𝐴, ∅) +𝑜 if(𝐵 ∈ ω, 𝐵, ∅))) +𝑜 if(𝐵 ∈ ω, 𝐵, ∅)) = (((𝐶 +𝑜 𝐷) ·𝑜 (𝐶 +𝑜 𝐷)) +𝑜 𝐷) ↔ (if(𝐴 ∈ ω, 𝐴, ∅) = 𝐶 ∧ if(𝐵 ∈ ω, 𝐵, ∅) = 𝐷)) ↔ ((((if(𝐴 ∈ ω, 𝐴, ∅) +𝑜 if(𝐵 ∈ ω, 𝐵, ∅)) ·𝑜 (if(𝐴 ∈ ω, 𝐴, ∅) +𝑜 if(𝐵 ∈ ω, 𝐵, ∅))) +𝑜 if(𝐵 ∈ ω, 𝐵, ∅)) = (((if(𝐶 ∈ ω, 𝐶, ∅) +𝑜 𝐷) ·𝑜 (if(𝐶 ∈ ω, 𝐶, ∅) +𝑜 𝐷)) +𝑜 𝐷) ↔ (if(𝐴 ∈ ω, 𝐴, ∅) = if(𝐶 ∈ ω, 𝐶, ∅) ∧ if(𝐵 ∈ ω, 𝐵, ∅) = 𝐷))))
23 oveq2 6557 . . . . . 6 (𝐷 = if(𝐷 ∈ ω, 𝐷, ∅) → (if(𝐶 ∈ ω, 𝐶, ∅) +𝑜 𝐷) = (if(𝐶 ∈ ω, 𝐶, ∅) +𝑜 if(𝐷 ∈ ω, 𝐷, ∅)))
2423, 23oveq12d 6567 . . . . 5 (𝐷 = if(𝐷 ∈ ω, 𝐷, ∅) → ((if(𝐶 ∈ ω, 𝐶, ∅) +𝑜 𝐷) ·𝑜 (if(𝐶 ∈ ω, 𝐶, ∅) +𝑜 𝐷)) = ((if(𝐶 ∈ ω, 𝐶, ∅) +𝑜 if(𝐷 ∈ ω, 𝐷, ∅)) ·𝑜 (if(𝐶 ∈ ω, 𝐶, ∅) +𝑜 if(𝐷 ∈ ω, 𝐷, ∅))))
25 id 22 . . . . 5 (𝐷 = if(𝐷 ∈ ω, 𝐷, ∅) → 𝐷 = if(𝐷 ∈ ω, 𝐷, ∅))
2624, 25oveq12d 6567 . . . 4 (𝐷 = if(𝐷 ∈ ω, 𝐷, ∅) → (((if(𝐶 ∈ ω, 𝐶, ∅) +𝑜 𝐷) ·𝑜 (if(𝐶 ∈ ω, 𝐶, ∅) +𝑜 𝐷)) +𝑜 𝐷) = (((if(𝐶 ∈ ω, 𝐶, ∅) +𝑜 if(𝐷 ∈ ω, 𝐷, ∅)) ·𝑜 (if(𝐶 ∈ ω, 𝐶, ∅) +𝑜 if(𝐷 ∈ ω, 𝐷, ∅))) +𝑜 if(𝐷 ∈ ω, 𝐷, ∅)))
2726eqeq2d 2620 . . 3 (𝐷 = if(𝐷 ∈ ω, 𝐷, ∅) → ((((if(𝐴 ∈ ω, 𝐴, ∅) +𝑜 if(𝐵 ∈ ω, 𝐵, ∅)) ·𝑜 (if(𝐴 ∈ ω, 𝐴, ∅) +𝑜 if(𝐵 ∈ ω, 𝐵, ∅))) +𝑜 if(𝐵 ∈ ω, 𝐵, ∅)) = (((if(𝐶 ∈ ω, 𝐶, ∅) +𝑜 𝐷) ·𝑜 (if(𝐶 ∈ ω, 𝐶, ∅) +𝑜 𝐷)) +𝑜 𝐷) ↔ (((if(𝐴 ∈ ω, 𝐴, ∅) +𝑜 if(𝐵 ∈ ω, 𝐵, ∅)) ·𝑜 (if(𝐴 ∈ ω, 𝐴, ∅) +𝑜 if(𝐵 ∈ ω, 𝐵, ∅))) +𝑜 if(𝐵 ∈ ω, 𝐵, ∅)) = (((if(𝐶 ∈ ω, 𝐶, ∅) +𝑜 if(𝐷 ∈ ω, 𝐷, ∅)) ·𝑜 (if(𝐶 ∈ ω, 𝐶, ∅) +𝑜 if(𝐷 ∈ ω, 𝐷, ∅))) +𝑜 if(𝐷 ∈ ω, 𝐷, ∅))))
28 eqeq2 2621 . . . 4 (𝐷 = if(𝐷 ∈ ω, 𝐷, ∅) → (if(𝐵 ∈ ω, 𝐵, ∅) = 𝐷 ↔ if(𝐵 ∈ ω, 𝐵, ∅) = if(𝐷 ∈ ω, 𝐷, ∅)))
2928anbi2d 736 . . 3 (𝐷 = if(𝐷 ∈ ω, 𝐷, ∅) → ((if(𝐴 ∈ ω, 𝐴, ∅) = if(𝐶 ∈ ω, 𝐶, ∅) ∧ if(𝐵 ∈ ω, 𝐵, ∅) = 𝐷) ↔ (if(𝐴 ∈ ω, 𝐴, ∅) = if(𝐶 ∈ ω, 𝐶, ∅) ∧ if(𝐵 ∈ ω, 𝐵, ∅) = if(𝐷 ∈ ω, 𝐷, ∅))))
3027, 29bibi12d 334 . 2 (𝐷 = if(𝐷 ∈ ω, 𝐷, ∅) → (((((if(𝐴 ∈ ω, 𝐴, ∅) +𝑜 if(𝐵 ∈ ω, 𝐵, ∅)) ·𝑜 (if(𝐴 ∈ ω, 𝐴, ∅) +𝑜 if(𝐵 ∈ ω, 𝐵, ∅))) +𝑜 if(𝐵 ∈ ω, 𝐵, ∅)) = (((if(𝐶 ∈ ω, 𝐶, ∅) +𝑜 𝐷) ·𝑜 (if(𝐶 ∈ ω, 𝐶, ∅) +𝑜 𝐷)) +𝑜 𝐷) ↔ (if(𝐴 ∈ ω, 𝐴, ∅) = if(𝐶 ∈ ω, 𝐶, ∅) ∧ if(𝐵 ∈ ω, 𝐵, ∅) = 𝐷)) ↔ ((((if(𝐴 ∈ ω, 𝐴, ∅) +𝑜 if(𝐵 ∈ ω, 𝐵, ∅)) ·𝑜 (if(𝐴 ∈ ω, 𝐴, ∅) +𝑜 if(𝐵 ∈ ω, 𝐵, ∅))) +𝑜 if(𝐵 ∈ ω, 𝐵, ∅)) = (((if(𝐶 ∈ ω, 𝐶, ∅) +𝑜 if(𝐷 ∈ ω, 𝐷, ∅)) ·𝑜 (if(𝐶 ∈ ω, 𝐶, ∅) +𝑜 if(𝐷 ∈ ω, 𝐷, ∅))) +𝑜 if(𝐷 ∈ ω, 𝐷, ∅)) ↔ (if(𝐴 ∈ ω, 𝐴, ∅) = if(𝐶 ∈ ω, 𝐶, ∅) ∧ if(𝐵 ∈ ω, 𝐵, ∅) = if(𝐷 ∈ ω, 𝐷, ∅)))))
31 peano1 6977 . . . 4 ∅ ∈ ω
3231elimel 4100 . . 3 if(𝐴 ∈ ω, 𝐴, ∅) ∈ ω
3331elimel 4100 . . 3 if(𝐵 ∈ ω, 𝐵, ∅) ∈ ω
3431elimel 4100 . . 3 if(𝐶 ∈ ω, 𝐶, ∅) ∈ ω
3531elimel 4100 . . 3 if(𝐷 ∈ ω, 𝐷, ∅) ∈ ω
3632, 33, 34, 35omopthi 7624 . 2 ((((if(𝐴 ∈ ω, 𝐴, ∅) +𝑜 if(𝐵 ∈ ω, 𝐵, ∅)) ·𝑜 (if(𝐴 ∈ ω, 𝐴, ∅) +𝑜 if(𝐵 ∈ ω, 𝐵, ∅))) +𝑜 if(𝐵 ∈ ω, 𝐵, ∅)) = (((if(𝐶 ∈ ω, 𝐶, ∅) +𝑜 if(𝐷 ∈ ω, 𝐷, ∅)) ·𝑜 (if(𝐶 ∈ ω, 𝐶, ∅) +𝑜 if(𝐷 ∈ ω, 𝐷, ∅))) +𝑜 if(𝐷 ∈ ω, 𝐷, ∅)) ↔ (if(𝐴 ∈ ω, 𝐴, ∅) = if(𝐶 ∈ ω, 𝐶, ∅) ∧ if(𝐵 ∈ ω, 𝐵, ∅) = if(𝐷 ∈ ω, 𝐷, ∅)))
377, 15, 22, 30, 36dedth4h 4092 1 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐶 ∈ ω ∧ 𝐷 ∈ ω)) → ((((𝐴 +𝑜 𝐵) ·𝑜 (𝐴 +𝑜 𝐵)) +𝑜 𝐵) = (((𝐶 +𝑜 𝐷) ·𝑜 (𝐶 +𝑜 𝐷)) +𝑜 𝐷) ↔ (𝐴 = 𝐶𝐵 = 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  c0 3874  ifcif 4036  (class class class)co 6549  ωcom 6957   +𝑜 coa 7444   ·𝑜 comu 7445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-omul 7452
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator