MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omopthlem2 Structured version   Visualization version   GIF version

Theorem omopthlem2 7623
Description: Lemma for omopthi 7624. (Contributed by Scott Fenton, 16-Apr-2012.) (Revised by Mario Carneiro, 17-Nov-2014.)
Hypotheses
Ref Expression
omopthlem2.1 𝐴 ∈ ω
omopthlem2.2 𝐵 ∈ ω
omopthlem2.3 𝐶 ∈ ω
omopthlem2.4 𝐷 ∈ ω
Assertion
Ref Expression
omopthlem2 ((𝐴 +𝑜 𝐵) ∈ 𝐶 → ¬ ((𝐶 ·𝑜 𝐶) +𝑜 𝐷) = (((𝐴 +𝑜 𝐵) ·𝑜 (𝐴 +𝑜 𝐵)) +𝑜 𝐵))

Proof of Theorem omopthlem2
StepHypRef Expression
1 omopthlem2.3 . . . . . . 7 𝐶 ∈ ω
21, 1nnmcli 7582 . . . . . 6 (𝐶 ·𝑜 𝐶) ∈ ω
3 omopthlem2.4 . . . . . 6 𝐷 ∈ ω
42, 3nnacli 7581 . . . . 5 ((𝐶 ·𝑜 𝐶) +𝑜 𝐷) ∈ ω
54nnoni 6964 . . . 4 ((𝐶 ·𝑜 𝐶) +𝑜 𝐷) ∈ On
65onirri 5751 . . 3 ¬ ((𝐶 ·𝑜 𝐶) +𝑜 𝐷) ∈ ((𝐶 ·𝑜 𝐶) +𝑜 𝐷)
7 eleq1 2676 . . 3 (((𝐶 ·𝑜 𝐶) +𝑜 𝐷) = (((𝐴 +𝑜 𝐵) ·𝑜 (𝐴 +𝑜 𝐵)) +𝑜 𝐵) → (((𝐶 ·𝑜 𝐶) +𝑜 𝐷) ∈ ((𝐶 ·𝑜 𝐶) +𝑜 𝐷) ↔ (((𝐴 +𝑜 𝐵) ·𝑜 (𝐴 +𝑜 𝐵)) +𝑜 𝐵) ∈ ((𝐶 ·𝑜 𝐶) +𝑜 𝐷)))
86, 7mtbii 315 . 2 (((𝐶 ·𝑜 𝐶) +𝑜 𝐷) = (((𝐴 +𝑜 𝐵) ·𝑜 (𝐴 +𝑜 𝐵)) +𝑜 𝐵) → ¬ (((𝐴 +𝑜 𝐵) ·𝑜 (𝐴 +𝑜 𝐵)) +𝑜 𝐵) ∈ ((𝐶 ·𝑜 𝐶) +𝑜 𝐷))
9 nnaword1 7596 . . . 4 (((𝐶 ·𝑜 𝐶) ∈ ω ∧ 𝐷 ∈ ω) → (𝐶 ·𝑜 𝐶) ⊆ ((𝐶 ·𝑜 𝐶) +𝑜 𝐷))
102, 3, 9mp2an 704 . . 3 (𝐶 ·𝑜 𝐶) ⊆ ((𝐶 ·𝑜 𝐶) +𝑜 𝐷)
11 omopthlem2.2 . . . . . . . . 9 𝐵 ∈ ω
12 omopthlem2.1 . . . . . . . . . . 11 𝐴 ∈ ω
1312, 11nnacli 7581 . . . . . . . . . 10 (𝐴 +𝑜 𝐵) ∈ ω
1413, 12nnacli 7581 . . . . . . . . 9 ((𝐴 +𝑜 𝐵) +𝑜 𝐴) ∈ ω
15 nnaword1 7596 . . . . . . . . 9 ((𝐵 ∈ ω ∧ ((𝐴 +𝑜 𝐵) +𝑜 𝐴) ∈ ω) → 𝐵 ⊆ (𝐵 +𝑜 ((𝐴 +𝑜 𝐵) +𝑜 𝐴)))
1611, 14, 15mp2an 704 . . . . . . . 8 𝐵 ⊆ (𝐵 +𝑜 ((𝐴 +𝑜 𝐵) +𝑜 𝐴))
17 nnacom 7584 . . . . . . . . 9 ((𝐵 ∈ ω ∧ ((𝐴 +𝑜 𝐵) +𝑜 𝐴) ∈ ω) → (𝐵 +𝑜 ((𝐴 +𝑜 𝐵) +𝑜 𝐴)) = (((𝐴 +𝑜 𝐵) +𝑜 𝐴) +𝑜 𝐵))
1811, 14, 17mp2an 704 . . . . . . . 8 (𝐵 +𝑜 ((𝐴 +𝑜 𝐵) +𝑜 𝐴)) = (((𝐴 +𝑜 𝐵) +𝑜 𝐴) +𝑜 𝐵)
1916, 18sseqtri 3600 . . . . . . 7 𝐵 ⊆ (((𝐴 +𝑜 𝐵) +𝑜 𝐴) +𝑜 𝐵)
20 nnaass 7589 . . . . . . . . 9 (((𝐴 +𝑜 𝐵) ∈ ω ∧ 𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (((𝐴 +𝑜 𝐵) +𝑜 𝐴) +𝑜 𝐵) = ((𝐴 +𝑜 𝐵) +𝑜 (𝐴 +𝑜 𝐵)))
2113, 12, 11, 20mp3an 1416 . . . . . . . 8 (((𝐴 +𝑜 𝐵) +𝑜 𝐴) +𝑜 𝐵) = ((𝐴 +𝑜 𝐵) +𝑜 (𝐴 +𝑜 𝐵))
22 nnm2 7616 . . . . . . . . 9 ((𝐴 +𝑜 𝐵) ∈ ω → ((𝐴 +𝑜 𝐵) ·𝑜 2𝑜) = ((𝐴 +𝑜 𝐵) +𝑜 (𝐴 +𝑜 𝐵)))
2313, 22ax-mp 5 . . . . . . . 8 ((𝐴 +𝑜 𝐵) ·𝑜 2𝑜) = ((𝐴 +𝑜 𝐵) +𝑜 (𝐴 +𝑜 𝐵))
2421, 23eqtr4i 2635 . . . . . . 7 (((𝐴 +𝑜 𝐵) +𝑜 𝐴) +𝑜 𝐵) = ((𝐴 +𝑜 𝐵) ·𝑜 2𝑜)
2519, 24sseqtri 3600 . . . . . 6 𝐵 ⊆ ((𝐴 +𝑜 𝐵) ·𝑜 2𝑜)
26 2onn 7607 . . . . . . . 8 2𝑜 ∈ ω
2713, 26nnmcli 7582 . . . . . . 7 ((𝐴 +𝑜 𝐵) ·𝑜 2𝑜) ∈ ω
2813, 13nnmcli 7582 . . . . . . 7 ((𝐴 +𝑜 𝐵) ·𝑜 (𝐴 +𝑜 𝐵)) ∈ ω
29 nnawordi 7588 . . . . . . 7 ((𝐵 ∈ ω ∧ ((𝐴 +𝑜 𝐵) ·𝑜 2𝑜) ∈ ω ∧ ((𝐴 +𝑜 𝐵) ·𝑜 (𝐴 +𝑜 𝐵)) ∈ ω) → (𝐵 ⊆ ((𝐴 +𝑜 𝐵) ·𝑜 2𝑜) → (𝐵 +𝑜 ((𝐴 +𝑜 𝐵) ·𝑜 (𝐴 +𝑜 𝐵))) ⊆ (((𝐴 +𝑜 𝐵) ·𝑜 2𝑜) +𝑜 ((𝐴 +𝑜 𝐵) ·𝑜 (𝐴 +𝑜 𝐵)))))
3011, 27, 28, 29mp3an 1416 . . . . . 6 (𝐵 ⊆ ((𝐴 +𝑜 𝐵) ·𝑜 2𝑜) → (𝐵 +𝑜 ((𝐴 +𝑜 𝐵) ·𝑜 (𝐴 +𝑜 𝐵))) ⊆ (((𝐴 +𝑜 𝐵) ·𝑜 2𝑜) +𝑜 ((𝐴 +𝑜 𝐵) ·𝑜 (𝐴 +𝑜 𝐵))))
3125, 30ax-mp 5 . . . . 5 (𝐵 +𝑜 ((𝐴 +𝑜 𝐵) ·𝑜 (𝐴 +𝑜 𝐵))) ⊆ (((𝐴 +𝑜 𝐵) ·𝑜 2𝑜) +𝑜 ((𝐴 +𝑜 𝐵) ·𝑜 (𝐴 +𝑜 𝐵)))
32 nnacom 7584 . . . . . 6 ((((𝐴 +𝑜 𝐵) ·𝑜 (𝐴 +𝑜 𝐵)) ∈ ω ∧ 𝐵 ∈ ω) → (((𝐴 +𝑜 𝐵) ·𝑜 (𝐴 +𝑜 𝐵)) +𝑜 𝐵) = (𝐵 +𝑜 ((𝐴 +𝑜 𝐵) ·𝑜 (𝐴 +𝑜 𝐵))))
3328, 11, 32mp2an 704 . . . . 5 (((𝐴 +𝑜 𝐵) ·𝑜 (𝐴 +𝑜 𝐵)) +𝑜 𝐵) = (𝐵 +𝑜 ((𝐴 +𝑜 𝐵) ·𝑜 (𝐴 +𝑜 𝐵)))
34 nnacom 7584 . . . . . 6 ((((𝐴 +𝑜 𝐵) ·𝑜 (𝐴 +𝑜 𝐵)) ∈ ω ∧ ((𝐴 +𝑜 𝐵) ·𝑜 2𝑜) ∈ ω) → (((𝐴 +𝑜 𝐵) ·𝑜 (𝐴 +𝑜 𝐵)) +𝑜 ((𝐴 +𝑜 𝐵) ·𝑜 2𝑜)) = (((𝐴 +𝑜 𝐵) ·𝑜 2𝑜) +𝑜 ((𝐴 +𝑜 𝐵) ·𝑜 (𝐴 +𝑜 𝐵))))
3528, 27, 34mp2an 704 . . . . 5 (((𝐴 +𝑜 𝐵) ·𝑜 (𝐴 +𝑜 𝐵)) +𝑜 ((𝐴 +𝑜 𝐵) ·𝑜 2𝑜)) = (((𝐴 +𝑜 𝐵) ·𝑜 2𝑜) +𝑜 ((𝐴 +𝑜 𝐵) ·𝑜 (𝐴 +𝑜 𝐵)))
3631, 33, 353sstr4i 3607 . . . 4 (((𝐴 +𝑜 𝐵) ·𝑜 (𝐴 +𝑜 𝐵)) +𝑜 𝐵) ⊆ (((𝐴 +𝑜 𝐵) ·𝑜 (𝐴 +𝑜 𝐵)) +𝑜 ((𝐴 +𝑜 𝐵) ·𝑜 2𝑜))
3713, 1omopthlem1 7622 . . . 4 ((𝐴 +𝑜 𝐵) ∈ 𝐶 → (((𝐴 +𝑜 𝐵) ·𝑜 (𝐴 +𝑜 𝐵)) +𝑜 ((𝐴 +𝑜 𝐵) ·𝑜 2𝑜)) ∈ (𝐶 ·𝑜 𝐶))
3828, 11nnacli 7581 . . . . . 6 (((𝐴 +𝑜 𝐵) ·𝑜 (𝐴 +𝑜 𝐵)) +𝑜 𝐵) ∈ ω
3938nnoni 6964 . . . . 5 (((𝐴 +𝑜 𝐵) ·𝑜 (𝐴 +𝑜 𝐵)) +𝑜 𝐵) ∈ On
402nnoni 6964 . . . . 5 (𝐶 ·𝑜 𝐶) ∈ On
41 ontr2 5689 . . . . 5 (((((𝐴 +𝑜 𝐵) ·𝑜 (𝐴 +𝑜 𝐵)) +𝑜 𝐵) ∈ On ∧ (𝐶 ·𝑜 𝐶) ∈ On) → (((((𝐴 +𝑜 𝐵) ·𝑜 (𝐴 +𝑜 𝐵)) +𝑜 𝐵) ⊆ (((𝐴 +𝑜 𝐵) ·𝑜 (𝐴 +𝑜 𝐵)) +𝑜 ((𝐴 +𝑜 𝐵) ·𝑜 2𝑜)) ∧ (((𝐴 +𝑜 𝐵) ·𝑜 (𝐴 +𝑜 𝐵)) +𝑜 ((𝐴 +𝑜 𝐵) ·𝑜 2𝑜)) ∈ (𝐶 ·𝑜 𝐶)) → (((𝐴 +𝑜 𝐵) ·𝑜 (𝐴 +𝑜 𝐵)) +𝑜 𝐵) ∈ (𝐶 ·𝑜 𝐶)))
4239, 40, 41mp2an 704 . . . 4 (((((𝐴 +𝑜 𝐵) ·𝑜 (𝐴 +𝑜 𝐵)) +𝑜 𝐵) ⊆ (((𝐴 +𝑜 𝐵) ·𝑜 (𝐴 +𝑜 𝐵)) +𝑜 ((𝐴 +𝑜 𝐵) ·𝑜 2𝑜)) ∧ (((𝐴 +𝑜 𝐵) ·𝑜 (𝐴 +𝑜 𝐵)) +𝑜 ((𝐴 +𝑜 𝐵) ·𝑜 2𝑜)) ∈ (𝐶 ·𝑜 𝐶)) → (((𝐴 +𝑜 𝐵) ·𝑜 (𝐴 +𝑜 𝐵)) +𝑜 𝐵) ∈ (𝐶 ·𝑜 𝐶))
4336, 37, 42sylancr 694 . . 3 ((𝐴 +𝑜 𝐵) ∈ 𝐶 → (((𝐴 +𝑜 𝐵) ·𝑜 (𝐴 +𝑜 𝐵)) +𝑜 𝐵) ∈ (𝐶 ·𝑜 𝐶))
4410, 43sseldi 3566 . 2 ((𝐴 +𝑜 𝐵) ∈ 𝐶 → (((𝐴 +𝑜 𝐵) ·𝑜 (𝐴 +𝑜 𝐵)) +𝑜 𝐵) ∈ ((𝐶 ·𝑜 𝐶) +𝑜 𝐷))
458, 44nsyl3 132 1 ((𝐴 +𝑜 𝐵) ∈ 𝐶 → ¬ ((𝐶 ·𝑜 𝐶) +𝑜 𝐷) = (((𝐴 +𝑜 𝐵) ·𝑜 (𝐴 +𝑜 𝐵)) +𝑜 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383   = wceq 1475  wcel 1977  wss 3540  Oncon0 5640  (class class class)co 6549  ωcom 6957  2𝑜c2o 7441   +𝑜 coa 7444   ·𝑜 comu 7445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-omul 7452
This theorem is referenced by:  omopthi  7624
  Copyright terms: Public domain W3C validator