Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nodenselem7 Structured version   Visualization version   GIF version

Theorem nodenselem7 31086
Description: Lemma for nodense 31088. 𝐴 and 𝐵 are equal at all elements of the abstraction. (Contributed by Scott Fenton, 17-Jun-2011.)
Assertion
Ref Expression
nodenselem7 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → (𝐶 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} → (𝐴𝐶) = (𝐵𝐶)))
Distinct variable groups:   𝐴,𝑎   𝐵,𝑎   𝐶,𝑎

Proof of Theorem nodenselem7
StepHypRef Expression
1 nodenselem4 31083 . . . . 5 (((𝐴 No 𝐵 No ) ∧ 𝐴 <s 𝐵) → {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ∈ On)
21adantrl 748 . . . 4 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ∈ On)
3 onelon 5665 . . . . 5 (( {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ∈ On ∧ 𝐶 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) → 𝐶 ∈ On)
43ex 449 . . . 4 ( {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ∈ On → (𝐶 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} → 𝐶 ∈ On))
52, 4syl 17 . . 3 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → (𝐶 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} → 𝐶 ∈ On))
62, 3sylan 487 . . . . . . . 8 ((((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) ∧ 𝐶 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) → 𝐶 ∈ On)
7 ontri1 5674 . . . . . . . . . . . . . 14 (( {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ∈ On ∧ 𝐶 ∈ On) → ( {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ⊆ 𝐶 ↔ ¬ 𝐶 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}))
87con2bid 343 . . . . . . . . . . . . 13 (( {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ∈ On ∧ 𝐶 ∈ On) → (𝐶 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ↔ ¬ {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ⊆ 𝐶))
98biimpd 218 . . . . . . . . . . . 12 (( {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ∈ On ∧ 𝐶 ∈ On) → (𝐶 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} → ¬ {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ⊆ 𝐶))
109ex 449 . . . . . . . . . . 11 ( {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ∈ On → (𝐶 ∈ On → (𝐶 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} → ¬ {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ⊆ 𝐶)))
1110com23 84 . . . . . . . . . 10 ( {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ∈ On → (𝐶 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} → (𝐶 ∈ On → ¬ {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ⊆ 𝐶)))
122, 11syl 17 . . . . . . . . 9 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → (𝐶 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} → (𝐶 ∈ On → ¬ {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ⊆ 𝐶)))
1312imp 444 . . . . . . . 8 ((((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) ∧ 𝐶 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) → (𝐶 ∈ On → ¬ {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ⊆ 𝐶))
146, 13mpd 15 . . . . . . 7 ((((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) ∧ 𝐶 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) → ¬ {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ⊆ 𝐶)
15 intss1 4427 . . . . . . 7 (𝐶 ∈ {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} → {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ⊆ 𝐶)
1614, 15nsyl 134 . . . . . 6 ((((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) ∧ 𝐶 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) → ¬ 𝐶 ∈ {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})
1716ex 449 . . . . 5 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → (𝐶 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} → ¬ 𝐶 ∈ {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}))
18 fveq2 6103 . . . . . . . 8 (𝑎 = 𝐶 → (𝐴𝑎) = (𝐴𝐶))
19 fveq2 6103 . . . . . . . 8 (𝑎 = 𝐶 → (𝐵𝑎) = (𝐵𝐶))
2018, 19neeq12d 2843 . . . . . . 7 (𝑎 = 𝐶 → ((𝐴𝑎) ≠ (𝐵𝑎) ↔ (𝐴𝐶) ≠ (𝐵𝐶)))
2120elrab 3331 . . . . . 6 (𝐶 ∈ {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ↔ (𝐶 ∈ On ∧ (𝐴𝐶) ≠ (𝐵𝐶)))
2221notbii 309 . . . . 5 𝐶 ∈ {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ↔ ¬ (𝐶 ∈ On ∧ (𝐴𝐶) ≠ (𝐵𝐶)))
2317, 22syl6ib 240 . . . 4 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → (𝐶 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} → ¬ (𝐶 ∈ On ∧ (𝐴𝐶) ≠ (𝐵𝐶))))
24 imnan 437 . . . 4 ((𝐶 ∈ On → ¬ (𝐴𝐶) ≠ (𝐵𝐶)) ↔ ¬ (𝐶 ∈ On ∧ (𝐴𝐶) ≠ (𝐵𝐶)))
2523, 24syl6ibr 241 . . 3 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → (𝐶 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} → (𝐶 ∈ On → ¬ (𝐴𝐶) ≠ (𝐵𝐶))))
265, 25mpdd 42 . 2 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → (𝐶 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} → ¬ (𝐴𝐶) ≠ (𝐵𝐶)))
27 df-ne 2782 . . 3 ((𝐴𝐶) ≠ (𝐵𝐶) ↔ ¬ (𝐴𝐶) = (𝐵𝐶))
2827con2bii 346 . 2 ((𝐴𝐶) = (𝐵𝐶) ↔ ¬ (𝐴𝐶) ≠ (𝐵𝐶))
2926, 28syl6ibr 241 1 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → (𝐶 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} → (𝐴𝐶) = (𝐵𝐶)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383   = wceq 1475  wcel 1977  wne 2780  {crab 2900  wss 3540   cint 4410   class class class wbr 4583  Oncon0 5640  cfv 5804   No csur 31037   <s cslt 31038   bday cbday 31039
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-ord 5643  df-on 5644  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-1o 7447  df-2o 7448  df-no 31040  df-slt 31041  df-bday 31042
This theorem is referenced by:  nodense  31088
  Copyright terms: Public domain W3C validator