MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin1aufil Structured version   Visualization version   GIF version

Theorem fin1aufil 21546
Description: There are no definable free ultrafilters in ZFC. However, there are free ultrafilters in some choice-denying constructions. Here we show that given an amorphous set (a.k.a. a Ia-finite I-infinite set) 𝑋, the set of infinite subsets of 𝑋 is a free ultrafilter on 𝑋. (Contributed by Mario Carneiro, 20-May-2015.)
Hypothesis
Ref Expression
fin1aufil.1 𝐹 = (𝒫 𝑋 ∖ Fin)
Assertion
Ref Expression
fin1aufil (𝑋 ∈ (FinIa ∖ Fin) → (𝐹 ∈ (UFil‘𝑋) ∧ 𝐹 = ∅))

Proof of Theorem fin1aufil
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fin1aufil.1 . . . . . . 7 𝐹 = (𝒫 𝑋 ∖ Fin)
21eleq2i 2680 . . . . . 6 (𝑥𝐹𝑥 ∈ (𝒫 𝑋 ∖ Fin))
3 eldif 3550 . . . . . 6 (𝑥 ∈ (𝒫 𝑋 ∖ Fin) ↔ (𝑥 ∈ 𝒫 𝑋 ∧ ¬ 𝑥 ∈ Fin))
4 selpw 4115 . . . . . . 7 (𝑥 ∈ 𝒫 𝑋𝑥𝑋)
54anbi1i 727 . . . . . 6 ((𝑥 ∈ 𝒫 𝑋 ∧ ¬ 𝑥 ∈ Fin) ↔ (𝑥𝑋 ∧ ¬ 𝑥 ∈ Fin))
62, 3, 53bitri 285 . . . . 5 (𝑥𝐹 ↔ (𝑥𝑋 ∧ ¬ 𝑥 ∈ Fin))
76a1i 11 . . . 4 (𝑋 ∈ (FinIa ∖ Fin) → (𝑥𝐹 ↔ (𝑥𝑋 ∧ ¬ 𝑥 ∈ Fin)))
8 elex 3185 . . . 4 (𝑋 ∈ (FinIa ∖ Fin) → 𝑋 ∈ V)
9 eldifn 3695 . . . . 5 (𝑋 ∈ (FinIa ∖ Fin) → ¬ 𝑋 ∈ Fin)
10 eleq1 2676 . . . . . . 7 (𝑥 = 𝑋 → (𝑥 ∈ Fin ↔ 𝑋 ∈ Fin))
1110notbid 307 . . . . . 6 (𝑥 = 𝑋 → (¬ 𝑥 ∈ Fin ↔ ¬ 𝑋 ∈ Fin))
1211sbcieg 3435 . . . . 5 (𝑋 ∈ (FinIa ∖ Fin) → ([𝑋 / 𝑥] ¬ 𝑥 ∈ Fin ↔ ¬ 𝑋 ∈ Fin))
139, 12mpbird 246 . . . 4 (𝑋 ∈ (FinIa ∖ Fin) → [𝑋 / 𝑥] ¬ 𝑥 ∈ Fin)
14 0fin 8073 . . . . . 6 ∅ ∈ Fin
15 0ex 4718 . . . . . . . 8 ∅ ∈ V
16 eleq1 2676 . . . . . . . . 9 (𝑥 = ∅ → (𝑥 ∈ Fin ↔ ∅ ∈ Fin))
1716notbid 307 . . . . . . . 8 (𝑥 = ∅ → (¬ 𝑥 ∈ Fin ↔ ¬ ∅ ∈ Fin))
1815, 17sbcie 3437 . . . . . . 7 ([∅ / 𝑥] ¬ 𝑥 ∈ Fin ↔ ¬ ∅ ∈ Fin)
1918con2bii 346 . . . . . 6 (∅ ∈ Fin ↔ ¬ [∅ / 𝑥] ¬ 𝑥 ∈ Fin)
2014, 19mpbi 219 . . . . 5 ¬ [∅ / 𝑥] ¬ 𝑥 ∈ Fin
2120a1i 11 . . . 4 (𝑋 ∈ (FinIa ∖ Fin) → ¬ [∅ / 𝑥] ¬ 𝑥 ∈ Fin)
22 ssfi 8065 . . . . . . . 8 ((𝑦 ∈ Fin ∧ 𝑧𝑦) → 𝑧 ∈ Fin)
2322expcom 450 . . . . . . 7 (𝑧𝑦 → (𝑦 ∈ Fin → 𝑧 ∈ Fin))
24233ad2ant3 1077 . . . . . 6 ((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑦𝑋𝑧𝑦) → (𝑦 ∈ Fin → 𝑧 ∈ Fin))
2524con3d 147 . . . . 5 ((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑦𝑋𝑧𝑦) → (¬ 𝑧 ∈ Fin → ¬ 𝑦 ∈ Fin))
26 vex 3176 . . . . . 6 𝑧 ∈ V
27 eleq1 2676 . . . . . . 7 (𝑥 = 𝑧 → (𝑥 ∈ Fin ↔ 𝑧 ∈ Fin))
2827notbid 307 . . . . . 6 (𝑥 = 𝑧 → (¬ 𝑥 ∈ Fin ↔ ¬ 𝑧 ∈ Fin))
2926, 28sbcie 3437 . . . . 5 ([𝑧 / 𝑥] ¬ 𝑥 ∈ Fin ↔ ¬ 𝑧 ∈ Fin)
30 vex 3176 . . . . . 6 𝑦 ∈ V
31 eleq1 2676 . . . . . . 7 (𝑥 = 𝑦 → (𝑥 ∈ Fin ↔ 𝑦 ∈ Fin))
3231notbid 307 . . . . . 6 (𝑥 = 𝑦 → (¬ 𝑥 ∈ Fin ↔ ¬ 𝑦 ∈ Fin))
3330, 32sbcie 3437 . . . . 5 ([𝑦 / 𝑥] ¬ 𝑥 ∈ Fin ↔ ¬ 𝑦 ∈ Fin)
3425, 29, 333imtr4g 284 . . . 4 ((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑦𝑋𝑧𝑦) → ([𝑧 / 𝑥] ¬ 𝑥 ∈ Fin → [𝑦 / 𝑥] ¬ 𝑥 ∈ Fin))
35 eldifi 3694 . . . . . . . . 9 (𝑋 ∈ (FinIa ∖ Fin) → 𝑋 ∈ FinIa)
36 fin1ai 8998 . . . . . . . . 9 ((𝑋 ∈ FinIa𝑦𝑋) → (𝑦 ∈ Fin ∨ (𝑋𝑦) ∈ Fin))
3735, 36sylan 487 . . . . . . . 8 ((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑦𝑋) → (𝑦 ∈ Fin ∨ (𝑋𝑦) ∈ Fin))
38373adant3 1074 . . . . . . 7 ((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑦𝑋𝑧𝑋) → (𝑦 ∈ Fin ∨ (𝑋𝑦) ∈ Fin))
39 inundif 3998 . . . . . . . . . . 11 ((𝑧𝑦) ∪ (𝑧𝑦)) = 𝑧
40 incom 3767 . . . . . . . . . . . . 13 (𝑧𝑦) = (𝑦𝑧)
41 simprl 790 . . . . . . . . . . . . 13 (((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑦𝑋𝑧𝑋) ∧ ((𝑦𝑧) ∈ Fin ∧ (𝑋𝑦) ∈ Fin)) → (𝑦𝑧) ∈ Fin)
4240, 41syl5eqel 2692 . . . . . . . . . . . 12 (((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑦𝑋𝑧𝑋) ∧ ((𝑦𝑧) ∈ Fin ∧ (𝑋𝑦) ∈ Fin)) → (𝑧𝑦) ∈ Fin)
43 simprr 792 . . . . . . . . . . . . 13 (((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑦𝑋𝑧𝑋) ∧ ((𝑦𝑧) ∈ Fin ∧ (𝑋𝑦) ∈ Fin)) → (𝑋𝑦) ∈ Fin)
44 simpl3 1059 . . . . . . . . . . . . . 14 (((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑦𝑋𝑧𝑋) ∧ ((𝑦𝑧) ∈ Fin ∧ (𝑋𝑦) ∈ Fin)) → 𝑧𝑋)
4544ssdifd 3708 . . . . . . . . . . . . 13 (((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑦𝑋𝑧𝑋) ∧ ((𝑦𝑧) ∈ Fin ∧ (𝑋𝑦) ∈ Fin)) → (𝑧𝑦) ⊆ (𝑋𝑦))
46 ssfi 8065 . . . . . . . . . . . . 13 (((𝑋𝑦) ∈ Fin ∧ (𝑧𝑦) ⊆ (𝑋𝑦)) → (𝑧𝑦) ∈ Fin)
4743, 45, 46syl2anc 691 . . . . . . . . . . . 12 (((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑦𝑋𝑧𝑋) ∧ ((𝑦𝑧) ∈ Fin ∧ (𝑋𝑦) ∈ Fin)) → (𝑧𝑦) ∈ Fin)
48 unfi 8112 . . . . . . . . . . . 12 (((𝑧𝑦) ∈ Fin ∧ (𝑧𝑦) ∈ Fin) → ((𝑧𝑦) ∪ (𝑧𝑦)) ∈ Fin)
4942, 47, 48syl2anc 691 . . . . . . . . . . 11 (((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑦𝑋𝑧𝑋) ∧ ((𝑦𝑧) ∈ Fin ∧ (𝑋𝑦) ∈ Fin)) → ((𝑧𝑦) ∪ (𝑧𝑦)) ∈ Fin)
5039, 49syl5eqelr 2693 . . . . . . . . . 10 (((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑦𝑋𝑧𝑋) ∧ ((𝑦𝑧) ∈ Fin ∧ (𝑋𝑦) ∈ Fin)) → 𝑧 ∈ Fin)
5150expr 641 . . . . . . . . 9 (((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑦𝑋𝑧𝑋) ∧ (𝑦𝑧) ∈ Fin) → ((𝑋𝑦) ∈ Fin → 𝑧 ∈ Fin))
5251orim2d 881 . . . . . . . 8 (((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑦𝑋𝑧𝑋) ∧ (𝑦𝑧) ∈ Fin) → ((𝑦 ∈ Fin ∨ (𝑋𝑦) ∈ Fin) → (𝑦 ∈ Fin ∨ 𝑧 ∈ Fin)))
5352ex 449 . . . . . . 7 ((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑦𝑋𝑧𝑋) → ((𝑦𝑧) ∈ Fin → ((𝑦 ∈ Fin ∨ (𝑋𝑦) ∈ Fin) → (𝑦 ∈ Fin ∨ 𝑧 ∈ Fin))))
5438, 53mpid 43 . . . . . 6 ((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑦𝑋𝑧𝑋) → ((𝑦𝑧) ∈ Fin → (𝑦 ∈ Fin ∨ 𝑧 ∈ Fin)))
5554con3d 147 . . . . 5 ((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑦𝑋𝑧𝑋) → (¬ (𝑦 ∈ Fin ∨ 𝑧 ∈ Fin) → ¬ (𝑦𝑧) ∈ Fin))
5633, 29anbi12i 729 . . . . . 6 (([𝑦 / 𝑥] ¬ 𝑥 ∈ Fin ∧ [𝑧 / 𝑥] ¬ 𝑥 ∈ Fin) ↔ (¬ 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ Fin))
57 ioran 510 . . . . . 6 (¬ (𝑦 ∈ Fin ∨ 𝑧 ∈ Fin) ↔ (¬ 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ Fin))
5856, 57bitr4i 266 . . . . 5 (([𝑦 / 𝑥] ¬ 𝑥 ∈ Fin ∧ [𝑧 / 𝑥] ¬ 𝑥 ∈ Fin) ↔ ¬ (𝑦 ∈ Fin ∨ 𝑧 ∈ Fin))
5930inex1 4727 . . . . . 6 (𝑦𝑧) ∈ V
60 eleq1 2676 . . . . . . 7 (𝑥 = (𝑦𝑧) → (𝑥 ∈ Fin ↔ (𝑦𝑧) ∈ Fin))
6160notbid 307 . . . . . 6 (𝑥 = (𝑦𝑧) → (¬ 𝑥 ∈ Fin ↔ ¬ (𝑦𝑧) ∈ Fin))
6259, 61sbcie 3437 . . . . 5 ([(𝑦𝑧) / 𝑥] ¬ 𝑥 ∈ Fin ↔ ¬ (𝑦𝑧) ∈ Fin)
6355, 58, 623imtr4g 284 . . . 4 ((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑦𝑋𝑧𝑋) → (([𝑦 / 𝑥] ¬ 𝑥 ∈ Fin ∧ [𝑧 / 𝑥] ¬ 𝑥 ∈ Fin) → [(𝑦𝑧) / 𝑥] ¬ 𝑥 ∈ Fin))
647, 8, 13, 21, 34, 63isfild 21472 . . 3 (𝑋 ∈ (FinIa ∖ Fin) → 𝐹 ∈ (Fil‘𝑋))
659adantr 480 . . . . . . 7 ((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑥 ∈ 𝒫 𝑋) → ¬ 𝑋 ∈ Fin)
66 unfi 8112 . . . . . . . 8 ((𝑥 ∈ Fin ∧ (𝑋𝑥) ∈ Fin) → (𝑥 ∪ (𝑋𝑥)) ∈ Fin)
67 ssun2 3739 . . . . . . . . 9 𝑋 ⊆ (𝑥𝑋)
68 undif2 3996 . . . . . . . . 9 (𝑥 ∪ (𝑋𝑥)) = (𝑥𝑋)
6967, 68sseqtr4i 3601 . . . . . . . 8 𝑋 ⊆ (𝑥 ∪ (𝑋𝑥))
70 ssfi 8065 . . . . . . . 8 (((𝑥 ∪ (𝑋𝑥)) ∈ Fin ∧ 𝑋 ⊆ (𝑥 ∪ (𝑋𝑥))) → 𝑋 ∈ Fin)
7166, 69, 70sylancl 693 . . . . . . 7 ((𝑥 ∈ Fin ∧ (𝑋𝑥) ∈ Fin) → 𝑋 ∈ Fin)
7265, 71nsyl 134 . . . . . 6 ((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑥 ∈ 𝒫 𝑋) → ¬ (𝑥 ∈ Fin ∧ (𝑋𝑥) ∈ Fin))
73 ianor 508 . . . . . 6 (¬ (𝑥 ∈ Fin ∧ (𝑋𝑥) ∈ Fin) ↔ (¬ 𝑥 ∈ Fin ∨ ¬ (𝑋𝑥) ∈ Fin))
7472, 73sylib 207 . . . . 5 ((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑥 ∈ 𝒫 𝑋) → (¬ 𝑥 ∈ Fin ∨ ¬ (𝑋𝑥) ∈ Fin))
75 elpwi 4117 . . . . . . . 8 (𝑥 ∈ 𝒫 𝑋𝑥𝑋)
7675adantl 481 . . . . . . 7 ((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑥 ∈ 𝒫 𝑋) → 𝑥𝑋)
776baib 942 . . . . . . 7 (𝑥𝑋 → (𝑥𝐹 ↔ ¬ 𝑥 ∈ Fin))
7876, 77syl 17 . . . . . 6 ((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑥 ∈ 𝒫 𝑋) → (𝑥𝐹 ↔ ¬ 𝑥 ∈ Fin))
791eleq2i 2680 . . . . . . 7 ((𝑋𝑥) ∈ 𝐹 ↔ (𝑋𝑥) ∈ (𝒫 𝑋 ∖ Fin))
80 difss 3699 . . . . . . . . 9 (𝑋𝑥) ⊆ 𝑋
81 elpw2g 4754 . . . . . . . . . 10 (𝑋 ∈ (FinIa ∖ Fin) → ((𝑋𝑥) ∈ 𝒫 𝑋 ↔ (𝑋𝑥) ⊆ 𝑋))
8281adantr 480 . . . . . . . . 9 ((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑥 ∈ 𝒫 𝑋) → ((𝑋𝑥) ∈ 𝒫 𝑋 ↔ (𝑋𝑥) ⊆ 𝑋))
8380, 82mpbiri 247 . . . . . . . 8 ((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑥 ∈ 𝒫 𝑋) → (𝑋𝑥) ∈ 𝒫 𝑋)
84 eldif 3550 . . . . . . . . 9 ((𝑋𝑥) ∈ (𝒫 𝑋 ∖ Fin) ↔ ((𝑋𝑥) ∈ 𝒫 𝑋 ∧ ¬ (𝑋𝑥) ∈ Fin))
8584baib 942 . . . . . . . 8 ((𝑋𝑥) ∈ 𝒫 𝑋 → ((𝑋𝑥) ∈ (𝒫 𝑋 ∖ Fin) ↔ ¬ (𝑋𝑥) ∈ Fin))
8683, 85syl 17 . . . . . . 7 ((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑥 ∈ 𝒫 𝑋) → ((𝑋𝑥) ∈ (𝒫 𝑋 ∖ Fin) ↔ ¬ (𝑋𝑥) ∈ Fin))
8779, 86syl5bb 271 . . . . . 6 ((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑥 ∈ 𝒫 𝑋) → ((𝑋𝑥) ∈ 𝐹 ↔ ¬ (𝑋𝑥) ∈ Fin))
8878, 87orbi12d 742 . . . . 5 ((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑥 ∈ 𝒫 𝑋) → ((𝑥𝐹 ∨ (𝑋𝑥) ∈ 𝐹) ↔ (¬ 𝑥 ∈ Fin ∨ ¬ (𝑋𝑥) ∈ Fin)))
8974, 88mpbird 246 . . . 4 ((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑥 ∈ 𝒫 𝑋) → (𝑥𝐹 ∨ (𝑋𝑥) ∈ 𝐹))
9089ralrimiva 2949 . . 3 (𝑋 ∈ (FinIa ∖ Fin) → ∀𝑥 ∈ 𝒫 𝑋(𝑥𝐹 ∨ (𝑋𝑥) ∈ 𝐹))
91 isufil 21517 . . 3 (𝐹 ∈ (UFil‘𝑋) ↔ (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ 𝒫 𝑋(𝑥𝐹 ∨ (𝑋𝑥) ∈ 𝐹)))
9264, 90, 91sylanbrc 695 . 2 (𝑋 ∈ (FinIa ∖ Fin) → 𝐹 ∈ (UFil‘𝑋))
93 snfi 7923 . . . . 5 {𝑥} ∈ Fin
94 eldifn 3695 . . . . . 6 ({𝑥} ∈ (𝒫 𝑋 ∖ Fin) → ¬ {𝑥} ∈ Fin)
9594, 1eleq2s 2706 . . . . 5 ({𝑥} ∈ 𝐹 → ¬ {𝑥} ∈ Fin)
9693, 95mt2 190 . . . 4 ¬ {𝑥} ∈ 𝐹
97 uffixsn 21539 . . . . . 6 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥 𝐹) → {𝑥} ∈ 𝐹)
9892, 97sylan 487 . . . . 5 ((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑥 𝐹) → {𝑥} ∈ 𝐹)
9998ex 449 . . . 4 (𝑋 ∈ (FinIa ∖ Fin) → (𝑥 𝐹 → {𝑥} ∈ 𝐹))
10096, 99mtoi 189 . . 3 (𝑋 ∈ (FinIa ∖ Fin) → ¬ 𝑥 𝐹)
101100eq0rdv 3931 . 2 (𝑋 ∈ (FinIa ∖ Fin) → 𝐹 = ∅)
10292, 101jca 553 1 (𝑋 ∈ (FinIa ∖ Fin) → (𝐹 ∈ (UFil‘𝑋) ∧ 𝐹 = ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  [wsbc 3402  cdif 3537  cun 3538  cin 3539  wss 3540  c0 3874  𝒫 cpw 4108  {csn 4125   cint 4410  cfv 5804  Fincfn 7841  FinIacfin1a 8983  Filcfil 21459  UFilcufil 21513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-fin 7845  df-fin1a 8990  df-fbas 19564  df-fg 19565  df-fil 21460  df-ufil 21515
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator