MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin1aufil Structured version   Visualization version   Unicode version

Theorem fin1aufil 21002
Description: There are no definable free ultrafilters in ZFC. However, there are free ultrafilters in some choice-denying constructions. Here we show that given an amorphous set (a.k.a. a Ia-finite I-infinite set)  X, the set of infinite subsets of 
X is a free ultrafilter on  X. (Contributed by Mario Carneiro, 20-May-2015.)
Hypothesis
Ref Expression
fin1aufil.1  |-  F  =  ( ~P X  \  Fin )
Assertion
Ref Expression
fin1aufil  |-  ( X  e.  (FinIa  \  Fin )  -> 
( F  e.  (
UFil `  X )  /\  |^| F  =  (/) ) )

Proof of Theorem fin1aufil
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fin1aufil.1 . . . . . . 7  |-  F  =  ( ~P X  \  Fin )
21eleq2i 2532 . . . . . 6  |-  ( x  e.  F  <->  x  e.  ( ~P X  \  Fin ) )
3 eldif 3426 . . . . . 6  |-  ( x  e.  ( ~P X  \  Fin )  <->  ( x  e.  ~P X  /\  -.  x  e.  Fin )
)
4 selpw 3970 . . . . . . 7  |-  ( x  e.  ~P X  <->  x  C_  X
)
54anbi1i 706 . . . . . 6  |-  ( ( x  e.  ~P X  /\  -.  x  e.  Fin ) 
<->  ( x  C_  X  /\  -.  x  e.  Fin ) )
62, 3, 53bitri 279 . . . . 5  |-  ( x  e.  F  <->  ( x  C_  X  /\  -.  x  e.  Fin ) )
76a1i 11 . . . 4  |-  ( X  e.  (FinIa  \  Fin )  -> 
( x  e.  F  <->  ( x  C_  X  /\  -.  x  e.  Fin ) ) )
8 elex 3066 . . . 4  |-  ( X  e.  (FinIa  \  Fin )  ->  X  e.  _V )
9 eldifn 3568 . . . . 5  |-  ( X  e.  (FinIa  \  Fin )  ->  -.  X  e.  Fin )
10 eleq1 2528 . . . . . . 7  |-  ( x  =  X  ->  (
x  e.  Fin  <->  X  e.  Fin ) )
1110notbid 300 . . . . . 6  |-  ( x  =  X  ->  ( -.  x  e.  Fin  <->  -.  X  e.  Fin )
)
1211sbcieg 3312 . . . . 5  |-  ( X  e.  (FinIa  \  Fin )  -> 
( [. X  /  x ].  -.  x  e.  Fin  <->  -.  X  e.  Fin )
)
139, 12mpbird 240 . . . 4  |-  ( X  e.  (FinIa  \  Fin )  ->  [. X  /  x ].  -.  x  e.  Fin )
14 0fin 7830 . . . . . 6  |-  (/)  e.  Fin
15 0ex 4551 . . . . . . . 8  |-  (/)  e.  _V
16 eleq1 2528 . . . . . . . . 9  |-  ( x  =  (/)  ->  ( x  e.  Fin  <->  (/)  e.  Fin ) )
1716notbid 300 . . . . . . . 8  |-  ( x  =  (/)  ->  ( -.  x  e.  Fin  <->  -.  (/)  e.  Fin ) )
1815, 17sbcie 3314 . . . . . . 7  |-  ( [. (/)  /  x ].  -.  x  e.  Fin  <->  -.  (/)  e.  Fin )
1918con2bii 338 . . . . . 6  |-  ( (/)  e.  Fin  <->  -.  [. (/)  /  x ].  -.  x  e.  Fin )
2014, 19mpbi 213 . . . . 5  |-  -.  [. (/)  /  x ].  -.  x  e.  Fin
2120a1i 11 . . . 4  |-  ( X  e.  (FinIa  \  Fin )  ->  -.  [. (/)  /  x ].  -.  x  e.  Fin )
22 ssfi 7823 . . . . . . . 8  |-  ( ( y  e.  Fin  /\  z  C_  y )  -> 
z  e.  Fin )
2322expcom 441 . . . . . . 7  |-  ( z 
C_  y  ->  (
y  e.  Fin  ->  z  e.  Fin ) )
24233ad2ant3 1037 . . . . . 6  |-  ( ( X  e.  (FinIa  \  Fin )  /\  y  C_  X  /\  z  C_  y )  ->  ( y  e. 
Fin  ->  z  e.  Fin ) )
2524con3d 140 . . . . 5  |-  ( ( X  e.  (FinIa  \  Fin )  /\  y  C_  X  /\  z  C_  y )  ->  ( -.  z  e.  Fin  ->  -.  y  e.  Fin ) )
26 vex 3060 . . . . . 6  |-  z  e. 
_V
27 eleq1 2528 . . . . . . 7  |-  ( x  =  z  ->  (
x  e.  Fin  <->  z  e.  Fin ) )
2827notbid 300 . . . . . 6  |-  ( x  =  z  ->  ( -.  x  e.  Fin  <->  -.  z  e.  Fin )
)
2926, 28sbcie 3314 . . . . 5  |-  ( [. z  /  x ].  -.  x  e.  Fin  <->  -.  z  e.  Fin )
30 vex 3060 . . . . . 6  |-  y  e. 
_V
31 eleq1 2528 . . . . . . 7  |-  ( x  =  y  ->  (
x  e.  Fin  <->  y  e.  Fin ) )
3231notbid 300 . . . . . 6  |-  ( x  =  y  ->  ( -.  x  e.  Fin  <->  -.  y  e.  Fin )
)
3330, 32sbcie 3314 . . . . 5  |-  ( [. y  /  x ].  -.  x  e.  Fin  <->  -.  y  e.  Fin )
3425, 29, 333imtr4g 278 . . . 4  |-  ( ( X  e.  (FinIa  \  Fin )  /\  y  C_  X  /\  z  C_  y )  ->  ( [. z  /  x ].  -.  x  e.  Fin  ->  [. y  /  x ].  -.  x  e. 
Fin ) )
35 eldifi 3567 . . . . . . . . 9  |-  ( X  e.  (FinIa  \  Fin )  ->  X  e. FinIa )
36 fin1ai 8754 . . . . . . . . 9  |-  ( ( X  e. FinIa  /\  y  C_  X )  ->  (
y  e.  Fin  \/  ( X  \  y
)  e.  Fin )
)
3735, 36sylan 478 . . . . . . . 8  |-  ( ( X  e.  (FinIa  \  Fin )  /\  y  C_  X
)  ->  ( y  e.  Fin  \/  ( X 
\  y )  e. 
Fin ) )
38373adant3 1034 . . . . . . 7  |-  ( ( X  e.  (FinIa  \  Fin )  /\  y  C_  X  /\  z  C_  X )  ->  ( y  e. 
Fin  \/  ( X  \  y )  e.  Fin ) )
39 inundif 3857 . . . . . . . . . . 11  |-  ( ( z  i^i  y )  u.  ( z  \ 
y ) )  =  z
40 incom 3637 . . . . . . . . . . . . 13  |-  ( z  i^i  y )  =  ( y  i^i  z
)
41 simprl 769 . . . . . . . . . . . . 13  |-  ( ( ( X  e.  (FinIa  \  Fin )  /\  y  C_  X  /\  z  C_  X )  /\  (
( y  i^i  z
)  e.  Fin  /\  ( X  \  y
)  e.  Fin )
)  ->  ( y  i^i  z )  e.  Fin )
4240, 41syl5eqel 2544 . . . . . . . . . . . 12  |-  ( ( ( X  e.  (FinIa  \  Fin )  /\  y  C_  X  /\  z  C_  X )  /\  (
( y  i^i  z
)  e.  Fin  /\  ( X  \  y
)  e.  Fin )
)  ->  ( z  i^i  y )  e.  Fin )
43 simprr 771 . . . . . . . . . . . . 13  |-  ( ( ( X  e.  (FinIa  \  Fin )  /\  y  C_  X  /\  z  C_  X )  /\  (
( y  i^i  z
)  e.  Fin  /\  ( X  \  y
)  e.  Fin )
)  ->  ( X  \  y )  e.  Fin )
44 simpl3 1019 . . . . . . . . . . . . . 14  |-  ( ( ( X  e.  (FinIa  \  Fin )  /\  y  C_  X  /\  z  C_  X )  /\  (
( y  i^i  z
)  e.  Fin  /\  ( X  \  y
)  e.  Fin )
)  ->  z  C_  X )
4544ssdifd 3581 . . . . . . . . . . . . 13  |-  ( ( ( X  e.  (FinIa  \  Fin )  /\  y  C_  X  /\  z  C_  X )  /\  (
( y  i^i  z
)  e.  Fin  /\  ( X  \  y
)  e.  Fin )
)  ->  ( z  \  y )  C_  ( X  \  y
) )
46 ssfi 7823 . . . . . . . . . . . . 13  |-  ( ( ( X  \  y
)  e.  Fin  /\  ( z  \  y
)  C_  ( X  \  y ) )  -> 
( z  \  y
)  e.  Fin )
4743, 45, 46syl2anc 671 . . . . . . . . . . . 12  |-  ( ( ( X  e.  (FinIa  \  Fin )  /\  y  C_  X  /\  z  C_  X )  /\  (
( y  i^i  z
)  e.  Fin  /\  ( X  \  y
)  e.  Fin )
)  ->  ( z  \  y )  e. 
Fin )
48 unfi 7869 . . . . . . . . . . . 12  |-  ( ( ( z  i^i  y
)  e.  Fin  /\  ( z  \  y
)  e.  Fin )  ->  ( ( z  i^i  y )  u.  (
z  \  y )
)  e.  Fin )
4942, 47, 48syl2anc 671 . . . . . . . . . . 11  |-  ( ( ( X  e.  (FinIa  \  Fin )  /\  y  C_  X  /\  z  C_  X )  /\  (
( y  i^i  z
)  e.  Fin  /\  ( X  \  y
)  e.  Fin )
)  ->  ( (
z  i^i  y )  u.  ( z  \  y
) )  e.  Fin )
5039, 49syl5eqelr 2545 . . . . . . . . . 10  |-  ( ( ( X  e.  (FinIa  \  Fin )  /\  y  C_  X  /\  z  C_  X )  /\  (
( y  i^i  z
)  e.  Fin  /\  ( X  \  y
)  e.  Fin )
)  ->  z  e.  Fin )
5150expr 624 . . . . . . . . 9  |-  ( ( ( X  e.  (FinIa  \  Fin )  /\  y  C_  X  /\  z  C_  X )  /\  (
y  i^i  z )  e.  Fin )  ->  (
( X  \  y
)  e.  Fin  ->  z  e.  Fin ) )
5251orim2d 856 . . . . . . . 8  |-  ( ( ( X  e.  (FinIa  \  Fin )  /\  y  C_  X  /\  z  C_  X )  /\  (
y  i^i  z )  e.  Fin )  ->  (
( y  e.  Fin  \/  ( X  \  y
)  e.  Fin )  ->  ( y  e.  Fin  \/  z  e.  Fin )
) )
5352ex 440 . . . . . . 7  |-  ( ( X  e.  (FinIa  \  Fin )  /\  y  C_  X  /\  z  C_  X )  ->  ( ( y  i^i  z )  e. 
Fin  ->  ( ( y  e.  Fin  \/  ( X  \  y )  e. 
Fin )  ->  (
y  e.  Fin  \/  z  e.  Fin )
) ) )
5438, 53mpid 42 . . . . . 6  |-  ( ( X  e.  (FinIa  \  Fin )  /\  y  C_  X  /\  z  C_  X )  ->  ( ( y  i^i  z )  e. 
Fin  ->  ( y  e. 
Fin  \/  z  e.  Fin ) ) )
5554con3d 140 . . . . 5  |-  ( ( X  e.  (FinIa  \  Fin )  /\  y  C_  X  /\  z  C_  X )  ->  ( -.  (
y  e.  Fin  \/  z  e.  Fin )  ->  -.  ( y  i^i  z )  e.  Fin ) )
5633, 29anbi12i 708 . . . . . 6  |-  ( (
[. y  /  x ].  -.  x  e.  Fin  /\ 
[. z  /  x ].  -.  x  e.  Fin ) 
<->  ( -.  y  e. 
Fin  /\  -.  z  e.  Fin ) )
57 ioran 497 . . . . . 6  |-  ( -.  ( y  e.  Fin  \/  z  e.  Fin )  <->  ( -.  y  e.  Fin  /\ 
-.  z  e.  Fin ) )
5856, 57bitr4i 260 . . . . 5  |-  ( (
[. y  /  x ].  -.  x  e.  Fin  /\ 
[. z  /  x ].  -.  x  e.  Fin ) 
<->  -.  ( y  e. 
Fin  \/  z  e.  Fin ) )
5930inex1 4560 . . . . . 6  |-  ( y  i^i  z )  e. 
_V
60 eleq1 2528 . . . . . . 7  |-  ( x  =  ( y  i^i  z )  ->  (
x  e.  Fin  <->  ( y  i^i  z )  e.  Fin ) )
6160notbid 300 . . . . . 6  |-  ( x  =  ( y  i^i  z )  ->  ( -.  x  e.  Fin  <->  -.  ( y  i^i  z
)  e.  Fin )
)
6259, 61sbcie 3314 . . . . 5  |-  ( [. ( y  i^i  z
)  /  x ].  -.  x  e.  Fin  <->  -.  ( y  i^i  z
)  e.  Fin )
6355, 58, 623imtr4g 278 . . . 4  |-  ( ( X  e.  (FinIa  \  Fin )  /\  y  C_  X  /\  z  C_  X )  ->  ( ( [. y  /  x ].  -.  x  e.  Fin  /\  [. z  /  x ].  -.  x  e.  Fin )  ->  [. (
y  i^i  z )  /  x ].  -.  x  e.  Fin ) )
647, 8, 13, 21, 34, 63isfild 20928 . . 3  |-  ( X  e.  (FinIa  \  Fin )  ->  F  e.  ( Fil `  X ) )
659adantr 471 . . . . . . 7  |-  ( ( X  e.  (FinIa  \  Fin )  /\  x  e.  ~P X )  ->  -.  X  e.  Fin )
66 unfi 7869 . . . . . . . 8  |-  ( ( x  e.  Fin  /\  ( X  \  x
)  e.  Fin )  ->  ( x  u.  ( X  \  x ) )  e.  Fin )
67 ssun2 3610 . . . . . . . . 9  |-  X  C_  ( x  u.  X
)
68 undif2 3855 . . . . . . . . 9  |-  ( x  u.  ( X  \  x ) )  =  ( x  u.  X
)
6967, 68sseqtr4i 3477 . . . . . . . 8  |-  X  C_  ( x  u.  ( X  \  x ) )
70 ssfi 7823 . . . . . . . 8  |-  ( ( ( x  u.  ( X  \  x ) )  e.  Fin  /\  X  C_  ( x  u.  ( X  \  x ) ) )  ->  X  e.  Fin )
7166, 69, 70sylancl 673 . . . . . . 7  |-  ( ( x  e.  Fin  /\  ( X  \  x
)  e.  Fin )  ->  X  e.  Fin )
7265, 71nsyl 126 . . . . . 6  |-  ( ( X  e.  (FinIa  \  Fin )  /\  x  e.  ~P X )  ->  -.  ( x  e.  Fin  /\  ( X  \  x
)  e.  Fin )
)
73 ianor 495 . . . . . 6  |-  ( -.  ( x  e.  Fin  /\  ( X  \  x
)  e.  Fin )  <->  ( -.  x  e.  Fin  \/ 
-.  ( X  \  x )  e.  Fin ) )
7472, 73sylib 201 . . . . 5  |-  ( ( X  e.  (FinIa  \  Fin )  /\  x  e.  ~P X )  ->  ( -.  x  e.  Fin  \/ 
-.  ( X  \  x )  e.  Fin ) )
75 elpwi 3972 . . . . . . . 8  |-  ( x  e.  ~P X  ->  x  C_  X )
7675adantl 472 . . . . . . 7  |-  ( ( X  e.  (FinIa  \  Fin )  /\  x  e.  ~P X )  ->  x  C_  X )
776baib 919 . . . . . . 7  |-  ( x 
C_  X  ->  (
x  e.  F  <->  -.  x  e.  Fin ) )
7876, 77syl 17 . . . . . 6  |-  ( ( X  e.  (FinIa  \  Fin )  /\  x  e.  ~P X )  ->  (
x  e.  F  <->  -.  x  e.  Fin ) )
791eleq2i 2532 . . . . . . 7  |-  ( ( X  \  x )  e.  F  <->  ( X  \  x )  e.  ( ~P X  \  Fin ) )
80 difss 3572 . . . . . . . . 9  |-  ( X 
\  x )  C_  X
81 elpw2g 4583 . . . . . . . . . 10  |-  ( X  e.  (FinIa  \  Fin )  -> 
( ( X  \  x )  e.  ~P X 
<->  ( X  \  x
)  C_  X )
)
8281adantr 471 . . . . . . . . 9  |-  ( ( X  e.  (FinIa  \  Fin )  /\  x  e.  ~P X )  ->  (
( X  \  x
)  e.  ~P X  <->  ( X  \  x ) 
C_  X ) )
8380, 82mpbiri 241 . . . . . . . 8  |-  ( ( X  e.  (FinIa  \  Fin )  /\  x  e.  ~P X )  ->  ( X  \  x )  e. 
~P X )
84 eldif 3426 . . . . . . . . 9  |-  ( ( X  \  x )  e.  ( ~P X  \  Fin )  <->  ( ( X  \  x )  e. 
~P X  /\  -.  ( X  \  x
)  e.  Fin )
)
8584baib 919 . . . . . . . 8  |-  ( ( X  \  x )  e.  ~P X  -> 
( ( X  \  x )  e.  ( ~P X  \  Fin ) 
<->  -.  ( X  \  x )  e.  Fin ) )
8683, 85syl 17 . . . . . . 7  |-  ( ( X  e.  (FinIa  \  Fin )  /\  x  e.  ~P X )  ->  (
( X  \  x
)  e.  ( ~P X  \  Fin )  <->  -.  ( X  \  x
)  e.  Fin )
)
8779, 86syl5bb 265 . . . . . 6  |-  ( ( X  e.  (FinIa  \  Fin )  /\  x  e.  ~P X )  ->  (
( X  \  x
)  e.  F  <->  -.  ( X  \  x )  e. 
Fin ) )
8878, 87orbi12d 721 . . . . 5  |-  ( ( X  e.  (FinIa  \  Fin )  /\  x  e.  ~P X )  ->  (
( x  e.  F  \/  ( X  \  x
)  e.  F )  <-> 
( -.  x  e. 
Fin  \/  -.  ( X  \  x )  e. 
Fin ) ) )
8974, 88mpbird 240 . . . 4  |-  ( ( X  e.  (FinIa  \  Fin )  /\  x  e.  ~P X )  ->  (
x  e.  F  \/  ( X  \  x
)  e.  F ) )
9089ralrimiva 2814 . . 3  |-  ( X  e.  (FinIa  \  Fin )  ->  A. x  e.  ~P  X ( x  e.  F  \/  ( X 
\  x )  e.  F ) )
91 isufil 20973 . . 3  |-  ( F  e.  ( UFil `  X
)  <->  ( F  e.  ( Fil `  X
)  /\  A. x  e.  ~P  X ( x  e.  F  \/  ( X  \  x )  e.  F ) ) )
9264, 90, 91sylanbrc 675 . 2  |-  ( X  e.  (FinIa  \  Fin )  ->  F  e.  ( UFil `  X ) )
93 snfi 7681 . . . . 5  |-  { x }  e.  Fin
94 eldifn 3568 . . . . . 6  |-  ( { x }  e.  ( ~P X  \  Fin )  ->  -.  { x }  e.  Fin )
9594, 1eleq2s 2558 . . . . 5  |-  ( { x }  e.  F  ->  -.  { x }  e.  Fin )
9693, 95mt2 184 . . . 4  |-  -.  {
x }  e.  F
97 uffixsn 20995 . . . . . 6  |-  ( ( F  e.  ( UFil `  X )  /\  x  e.  |^| F )  ->  { x }  e.  F )
9892, 97sylan 478 . . . . 5  |-  ( ( X  e.  (FinIa  \  Fin )  /\  x  e.  |^| F )  ->  { x }  e.  F )
9998ex 440 . . . 4  |-  ( X  e.  (FinIa  \  Fin )  -> 
( x  e.  |^| F  ->  { x }  e.  F ) )
10096, 99mtoi 183 . . 3  |-  ( X  e.  (FinIa  \  Fin )  ->  -.  x  e.  |^| F
)
101100eq0rdv 3781 . 2  |-  ( X  e.  (FinIa  \  Fin )  ->  |^| F  =  (/) )
10292, 101jca 539 1  |-  ( X  e.  (FinIa  \  Fin )  -> 
( F  e.  (
UFil `  X )  /\  |^| F  =  (/) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 189    \/ wo 374    /\ wa 375    /\ w3a 991    = wceq 1455    e. wcel 1898   A.wral 2749   [.wsbc 3279    \ cdif 3413    u. cun 3414    i^i cin 3415    C_ wss 3416   (/)c0 3743   ~Pcpw 3963   {csn 3980   |^|cint 4248   ` cfv 5605   Fincfn 7600  FinIacfin1a 8739   Filcfil 20915   UFilcufil 20969
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1680  ax-4 1693  ax-5 1769  ax-6 1816  ax-7 1862  ax-8 1900  ax-9 1907  ax-10 1926  ax-11 1931  ax-12 1944  ax-13 2102  ax-ext 2442  ax-sep 4541  ax-nul 4550  ax-pow 4598  ax-pr 4656  ax-un 6615
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-3or 992  df-3an 993  df-tru 1458  df-ex 1675  df-nf 1679  df-sb 1809  df-eu 2314  df-mo 2315  df-clab 2449  df-cleq 2455  df-clel 2458  df-nfc 2592  df-ne 2635  df-nel 2636  df-ral 2754  df-rex 2755  df-reu 2756  df-rab 2758  df-v 3059  df-sbc 3280  df-csb 3376  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-pss 3432  df-nul 3744  df-if 3894  df-pw 3965  df-sn 3981  df-pr 3983  df-tp 3985  df-op 3987  df-uni 4213  df-int 4249  df-iun 4294  df-br 4419  df-opab 4478  df-mpt 4479  df-tr 4514  df-eprel 4767  df-id 4771  df-po 4777  df-so 4778  df-fr 4815  df-we 4817  df-xp 4862  df-rel 4863  df-cnv 4864  df-co 4865  df-dm 4866  df-rn 4867  df-res 4868  df-ima 4869  df-pred 5403  df-ord 5449  df-on 5450  df-lim 5451  df-suc 5452  df-iota 5569  df-fun 5607  df-fn 5608  df-f 5609  df-f1 5610  df-fo 5611  df-f1o 5612  df-fv 5613  df-ov 6323  df-oprab 6324  df-mpt2 6325  df-om 6725  df-wrecs 7059  df-recs 7121  df-rdg 7159  df-1o 7213  df-oadd 7217  df-er 7394  df-en 7601  df-fin 7604  df-fin1a 8746  df-fbas 19022  df-fg 19023  df-fil 20916  df-ufil 20971
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator