Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3ianor | Structured version Visualization version GIF version |
Description: Negated triple conjunction expressed in terms of triple disjunction. (Contributed by Jeff Hankins, 15-Aug-2009.) (Proof shortened by Andrew Salmon, 13-May-2011.) |
Ref | Expression |
---|---|
3ianor | ⊢ (¬ (𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (¬ 𝜑 ∨ ¬ 𝜓 ∨ ¬ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3anor 1047 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ¬ (¬ 𝜑 ∨ ¬ 𝜓 ∨ ¬ 𝜒)) | |
2 | 1 | con2bii 346 | . 2 ⊢ ((¬ 𝜑 ∨ ¬ 𝜓 ∨ ¬ 𝜒) ↔ ¬ (𝜑 ∧ 𝜓 ∧ 𝜒)) |
3 | 2 | bicomi 213 | 1 ⊢ (¬ (𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (¬ 𝜑 ∨ ¬ 𝜓 ∨ ¬ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 195 ∨ w3o 1030 ∧ w3a 1031 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 |
This theorem is referenced by: tppreqb 4277 funtpgOLD 5857 fr3nr 6871 bropopvvv 7142 elfznelfzo 12439 ssnn0fi 12646 hashtpg 13121 lcmfunsnlem2lem2 15190 prm23ge5 15358 clwwlknprop 26300 2wlkonot3v 26402 2spthonot3v 26403 2spotdisj 26588 lpni 26722 xrdifh 28932 dvasin 32666 limcicciooub 38704 prinfzo0 40363 2zrngnring 41742 |
Copyright terms: Public domain | W3C validator |