MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin1a2lem7 Structured version   Visualization version   GIF version

Theorem fin1a2lem7 9111
Description: Lemma for fin1a2 9120. Split a III-infinite set in two pieces. (Contributed by Stefan O'Rear, 7-Nov-2014.)
Hypotheses
Ref Expression
fin1a2lem.b 𝐸 = (𝑥 ∈ ω ↦ (2𝑜 ·𝑜 𝑥))
fin1a2lem.aa 𝑆 = (𝑥 ∈ On ↦ suc 𝑥)
Assertion
Ref Expression
fin1a2lem7 ((𝐴𝑉 ∧ ∀𝑦 ∈ 𝒫 𝐴(𝑦 ∈ FinIII ∨ (𝐴𝑦) ∈ FinIII)) → 𝐴 ∈ FinIII)
Distinct variable groups:   𝑦,𝐴   𝑦,𝐸
Allowed substitution hints:   𝐴(𝑥)   𝑆(𝑥,𝑦)   𝐸(𝑥)   𝑉(𝑥,𝑦)

Proof of Theorem fin1a2lem7
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 peano1 6977 . . . . . 6 ∅ ∈ ω
2 ne0i 3880 . . . . . 6 (∅ ∈ ω → ω ≠ ∅)
3 brwdomn0 8357 . . . . . 6 (ω ≠ ∅ → (ω ≼* 𝐴 ↔ ∃𝑓 𝑓:𝐴onto→ω))
41, 2, 3mp2b 10 . . . . 5 (ω ≼* 𝐴 ↔ ∃𝑓 𝑓:𝐴onto→ω)
5 vex 3176 . . . . . . . . . 10 𝑓 ∈ V
6 fof 6028 . . . . . . . . . 10 (𝑓:𝐴onto→ω → 𝑓:𝐴⟶ω)
7 dmfex 7017 . . . . . . . . . 10 ((𝑓 ∈ V ∧ 𝑓:𝐴⟶ω) → 𝐴 ∈ V)
85, 6, 7sylancr 694 . . . . . . . . 9 (𝑓:𝐴onto→ω → 𝐴 ∈ V)
9 cnvimass 5404 . . . . . . . . . 10 (𝑓 “ ran 𝐸) ⊆ dom 𝑓
10 fdm 5964 . . . . . . . . . . 11 (𝑓:𝐴⟶ω → dom 𝑓 = 𝐴)
116, 10syl 17 . . . . . . . . . 10 (𝑓:𝐴onto→ω → dom 𝑓 = 𝐴)
129, 11syl5sseq 3616 . . . . . . . . 9 (𝑓:𝐴onto→ω → (𝑓 “ ran 𝐸) ⊆ 𝐴)
138, 12sselpwd 4734 . . . . . . . 8 (𝑓:𝐴onto→ω → (𝑓 “ ran 𝐸) ∈ 𝒫 𝐴)
14 fin1a2lem.b . . . . . . . . . . . . . 14 𝐸 = (𝑥 ∈ ω ↦ (2𝑜 ·𝑜 𝑥))
1514fin1a2lem4 9108 . . . . . . . . . . . . 13 𝐸:ω–1-1→ω
16 f1cnv 6073 . . . . . . . . . . . . 13 (𝐸:ω–1-1→ω → 𝐸:ran 𝐸1-1-onto→ω)
17 f1ofo 6057 . . . . . . . . . . . . 13 (𝐸:ran 𝐸1-1-onto→ω → 𝐸:ran 𝐸onto→ω)
1815, 16, 17mp2b 10 . . . . . . . . . . . 12 𝐸:ran 𝐸onto→ω
19 fofun 6029 . . . . . . . . . . . 12 (𝐸:ran 𝐸onto→ω → Fun 𝐸)
2018, 19ax-mp 5 . . . . . . . . . . 11 Fun 𝐸
215resex 5363 . . . . . . . . . . 11 (𝑓 ↾ (𝑓 “ ran 𝐸)) ∈ V
22 cofunexg 7023 . . . . . . . . . . 11 ((Fun 𝐸 ∧ (𝑓 ↾ (𝑓 “ ran 𝐸)) ∈ V) → (𝐸 ∘ (𝑓 ↾ (𝑓 “ ran 𝐸))) ∈ V)
2320, 21, 22mp2an 704 . . . . . . . . . 10 (𝐸 ∘ (𝑓 ↾ (𝑓 “ ran 𝐸))) ∈ V
24 fofun 6029 . . . . . . . . . . . . 13 (𝑓:𝐴onto→ω → Fun 𝑓)
25 fores 6037 . . . . . . . . . . . . 13 ((Fun 𝑓 ∧ (𝑓 “ ran 𝐸) ⊆ dom 𝑓) → (𝑓 ↾ (𝑓 “ ran 𝐸)):(𝑓 “ ran 𝐸)–onto→(𝑓 “ (𝑓 “ ran 𝐸)))
2624, 9, 25sylancl 693 . . . . . . . . . . . 12 (𝑓:𝐴onto→ω → (𝑓 ↾ (𝑓 “ ran 𝐸)):(𝑓 “ ran 𝐸)–onto→(𝑓 “ (𝑓 “ ran 𝐸)))
27 f1f 6014 . . . . . . . . . . . . . . 15 (𝐸:ω–1-1→ω → 𝐸:ω⟶ω)
28 frn 5966 . . . . . . . . . . . . . . 15 (𝐸:ω⟶ω → ran 𝐸 ⊆ ω)
2915, 27, 28mp2b 10 . . . . . . . . . . . . . 14 ran 𝐸 ⊆ ω
30 foimacnv 6067 . . . . . . . . . . . . . 14 ((𝑓:𝐴onto→ω ∧ ran 𝐸 ⊆ ω) → (𝑓 “ (𝑓 “ ran 𝐸)) = ran 𝐸)
3129, 30mpan2 703 . . . . . . . . . . . . 13 (𝑓:𝐴onto→ω → (𝑓 “ (𝑓 “ ran 𝐸)) = ran 𝐸)
32 foeq3 6026 . . . . . . . . . . . . 13 ((𝑓 “ (𝑓 “ ran 𝐸)) = ran 𝐸 → ((𝑓 ↾ (𝑓 “ ran 𝐸)):(𝑓 “ ran 𝐸)–onto→(𝑓 “ (𝑓 “ ran 𝐸)) ↔ (𝑓 ↾ (𝑓 “ ran 𝐸)):(𝑓 “ ran 𝐸)–onto→ran 𝐸))
3331, 32syl 17 . . . . . . . . . . . 12 (𝑓:𝐴onto→ω → ((𝑓 ↾ (𝑓 “ ran 𝐸)):(𝑓 “ ran 𝐸)–onto→(𝑓 “ (𝑓 “ ran 𝐸)) ↔ (𝑓 ↾ (𝑓 “ ran 𝐸)):(𝑓 “ ran 𝐸)–onto→ran 𝐸))
3426, 33mpbid 221 . . . . . . . . . . 11 (𝑓:𝐴onto→ω → (𝑓 ↾ (𝑓 “ ran 𝐸)):(𝑓 “ ran 𝐸)–onto→ran 𝐸)
35 foco 6038 . . . . . . . . . . 11 ((𝐸:ran 𝐸onto→ω ∧ (𝑓 ↾ (𝑓 “ ran 𝐸)):(𝑓 “ ran 𝐸)–onto→ran 𝐸) → (𝐸 ∘ (𝑓 ↾ (𝑓 “ ran 𝐸))):(𝑓 “ ran 𝐸)–onto→ω)
3618, 34, 35sylancr 694 . . . . . . . . . 10 (𝑓:𝐴onto→ω → (𝐸 ∘ (𝑓 ↾ (𝑓 “ ran 𝐸))):(𝑓 “ ran 𝐸)–onto→ω)
37 fowdom 8359 . . . . . . . . . 10 (((𝐸 ∘ (𝑓 ↾ (𝑓 “ ran 𝐸))) ∈ V ∧ (𝐸 ∘ (𝑓 ↾ (𝑓 “ ran 𝐸))):(𝑓 “ ran 𝐸)–onto→ω) → ω ≼* (𝑓 “ ran 𝐸))
3823, 36, 37sylancr 694 . . . . . . . . 9 (𝑓:𝐴onto→ω → ω ≼* (𝑓 “ ran 𝐸))
395cnvex 7006 . . . . . . . . . . . 12 𝑓 ∈ V
4039imaex 6996 . . . . . . . . . . 11 (𝑓 “ ran 𝐸) ∈ V
41 isfin3-2 9072 . . . . . . . . . . 11 ((𝑓 “ ran 𝐸) ∈ V → ((𝑓 “ ran 𝐸) ∈ FinIII ↔ ¬ ω ≼* (𝑓 “ ran 𝐸)))
4240, 41ax-mp 5 . . . . . . . . . 10 ((𝑓 “ ran 𝐸) ∈ FinIII ↔ ¬ ω ≼* (𝑓 “ ran 𝐸))
4342con2bii 346 . . . . . . . . 9 (ω ≼* (𝑓 “ ran 𝐸) ↔ ¬ (𝑓 “ ran 𝐸) ∈ FinIII)
4438, 43sylib 207 . . . . . . . 8 (𝑓:𝐴onto→ω → ¬ (𝑓 “ ran 𝐸) ∈ FinIII)
45 fin1a2lem.aa . . . . . . . . . . . . . . 15 𝑆 = (𝑥 ∈ On ↦ suc 𝑥)
4614, 45fin1a2lem6 9110 . . . . . . . . . . . . . 14 (𝑆 ↾ ran 𝐸):ran 𝐸1-1-onto→(ω ∖ ran 𝐸)
47 f1ocnv 6062 . . . . . . . . . . . . . 14 ((𝑆 ↾ ran 𝐸):ran 𝐸1-1-onto→(ω ∖ ran 𝐸) → (𝑆 ↾ ran 𝐸):(ω ∖ ran 𝐸)–1-1-onto→ran 𝐸)
48 f1ofo 6057 . . . . . . . . . . . . . 14 ((𝑆 ↾ ran 𝐸):(ω ∖ ran 𝐸)–1-1-onto→ran 𝐸(𝑆 ↾ ran 𝐸):(ω ∖ ran 𝐸)–onto→ran 𝐸)
4946, 47, 48mp2b 10 . . . . . . . . . . . . 13 (𝑆 ↾ ran 𝐸):(ω ∖ ran 𝐸)–onto→ran 𝐸
50 foco 6038 . . . . . . . . . . . . 13 ((𝐸:ran 𝐸onto→ω ∧ (𝑆 ↾ ran 𝐸):(ω ∖ ran 𝐸)–onto→ran 𝐸) → (𝐸(𝑆 ↾ ran 𝐸)):(ω ∖ ran 𝐸)–onto→ω)
5118, 49, 50mp2an 704 . . . . . . . . . . . 12 (𝐸(𝑆 ↾ ran 𝐸)):(ω ∖ ran 𝐸)–onto→ω
52 fofun 6029 . . . . . . . . . . . 12 ((𝐸(𝑆 ↾ ran 𝐸)):(ω ∖ ran 𝐸)–onto→ω → Fun (𝐸(𝑆 ↾ ran 𝐸)))
5351, 52ax-mp 5 . . . . . . . . . . 11 Fun (𝐸(𝑆 ↾ ran 𝐸))
545resex 5363 . . . . . . . . . . 11 (𝑓 ↾ (𝐴 ∖ (𝑓 “ ran 𝐸))) ∈ V
55 cofunexg 7023 . . . . . . . . . . 11 ((Fun (𝐸(𝑆 ↾ ran 𝐸)) ∧ (𝑓 ↾ (𝐴 ∖ (𝑓 “ ran 𝐸))) ∈ V) → ((𝐸(𝑆 ↾ ran 𝐸)) ∘ (𝑓 ↾ (𝐴 ∖ (𝑓 “ ran 𝐸)))) ∈ V)
5653, 54, 55mp2an 704 . . . . . . . . . 10 ((𝐸(𝑆 ↾ ran 𝐸)) ∘ (𝑓 ↾ (𝐴 ∖ (𝑓 “ ran 𝐸)))) ∈ V
57 difss 3699 . . . . . . . . . . . . . 14 (𝐴 ∖ (𝑓 “ ran 𝐸)) ⊆ 𝐴
5857, 11syl5sseqr 3617 . . . . . . . . . . . . 13 (𝑓:𝐴onto→ω → (𝐴 ∖ (𝑓 “ ran 𝐸)) ⊆ dom 𝑓)
59 fores 6037 . . . . . . . . . . . . 13 ((Fun 𝑓 ∧ (𝐴 ∖ (𝑓 “ ran 𝐸)) ⊆ dom 𝑓) → (𝑓 ↾ (𝐴 ∖ (𝑓 “ ran 𝐸))):(𝐴 ∖ (𝑓 “ ran 𝐸))–onto→(𝑓 “ (𝐴 ∖ (𝑓 “ ran 𝐸))))
6024, 58, 59syl2anc 691 . . . . . . . . . . . 12 (𝑓:𝐴onto→ω → (𝑓 ↾ (𝐴 ∖ (𝑓 “ ran 𝐸))):(𝐴 ∖ (𝑓 “ ran 𝐸))–onto→(𝑓 “ (𝐴 ∖ (𝑓 “ ran 𝐸))))
61 funcnvcnv 5870 . . . . . . . . . . . . . . . 16 (Fun 𝑓 → Fun 𝑓)
62 imadif 5887 . . . . . . . . . . . . . . . 16 (Fun 𝑓 → (𝑓 “ (ω ∖ ran 𝐸)) = ((𝑓 “ ω) ∖ (𝑓 “ ran 𝐸)))
6324, 61, 623syl 18 . . . . . . . . . . . . . . 15 (𝑓:𝐴onto→ω → (𝑓 “ (ω ∖ ran 𝐸)) = ((𝑓 “ ω) ∖ (𝑓 “ ran 𝐸)))
6463imaeq2d 5385 . . . . . . . . . . . . . 14 (𝑓:𝐴onto→ω → (𝑓 “ (𝑓 “ (ω ∖ ran 𝐸))) = (𝑓 “ ((𝑓 “ ω) ∖ (𝑓 “ ran 𝐸))))
65 difss 3699 . . . . . . . . . . . . . . 15 (ω ∖ ran 𝐸) ⊆ ω
66 foimacnv 6067 . . . . . . . . . . . . . . 15 ((𝑓:𝐴onto→ω ∧ (ω ∖ ran 𝐸) ⊆ ω) → (𝑓 “ (𝑓 “ (ω ∖ ran 𝐸))) = (ω ∖ ran 𝐸))
6765, 66mpan2 703 . . . . . . . . . . . . . 14 (𝑓:𝐴onto→ω → (𝑓 “ (𝑓 “ (ω ∖ ran 𝐸))) = (ω ∖ ran 𝐸))
68 fimacnv 6255 . . . . . . . . . . . . . . . . 17 (𝑓:𝐴⟶ω → (𝑓 “ ω) = 𝐴)
696, 68syl 17 . . . . . . . . . . . . . . . 16 (𝑓:𝐴onto→ω → (𝑓 “ ω) = 𝐴)
7069difeq1d 3689 . . . . . . . . . . . . . . 15 (𝑓:𝐴onto→ω → ((𝑓 “ ω) ∖ (𝑓 “ ran 𝐸)) = (𝐴 ∖ (𝑓 “ ran 𝐸)))
7170imaeq2d 5385 . . . . . . . . . . . . . 14 (𝑓:𝐴onto→ω → (𝑓 “ ((𝑓 “ ω) ∖ (𝑓 “ ran 𝐸))) = (𝑓 “ (𝐴 ∖ (𝑓 “ ran 𝐸))))
7264, 67, 713eqtr3rd 2653 . . . . . . . . . . . . 13 (𝑓:𝐴onto→ω → (𝑓 “ (𝐴 ∖ (𝑓 “ ran 𝐸))) = (ω ∖ ran 𝐸))
73 foeq3 6026 . . . . . . . . . . . . 13 ((𝑓 “ (𝐴 ∖ (𝑓 “ ran 𝐸))) = (ω ∖ ran 𝐸) → ((𝑓 ↾ (𝐴 ∖ (𝑓 “ ran 𝐸))):(𝐴 ∖ (𝑓 “ ran 𝐸))–onto→(𝑓 “ (𝐴 ∖ (𝑓 “ ran 𝐸))) ↔ (𝑓 ↾ (𝐴 ∖ (𝑓 “ ran 𝐸))):(𝐴 ∖ (𝑓 “ ran 𝐸))–onto→(ω ∖ ran 𝐸)))
7472, 73syl 17 . . . . . . . . . . . 12 (𝑓:𝐴onto→ω → ((𝑓 ↾ (𝐴 ∖ (𝑓 “ ran 𝐸))):(𝐴 ∖ (𝑓 “ ran 𝐸))–onto→(𝑓 “ (𝐴 ∖ (𝑓 “ ran 𝐸))) ↔ (𝑓 ↾ (𝐴 ∖ (𝑓 “ ran 𝐸))):(𝐴 ∖ (𝑓 “ ran 𝐸))–onto→(ω ∖ ran 𝐸)))
7560, 74mpbid 221 . . . . . . . . . . 11 (𝑓:𝐴onto→ω → (𝑓 ↾ (𝐴 ∖ (𝑓 “ ran 𝐸))):(𝐴 ∖ (𝑓 “ ran 𝐸))–onto→(ω ∖ ran 𝐸))
76 foco 6038 . . . . . . . . . . 11 (((𝐸(𝑆 ↾ ran 𝐸)):(ω ∖ ran 𝐸)–onto→ω ∧ (𝑓 ↾ (𝐴 ∖ (𝑓 “ ran 𝐸))):(𝐴 ∖ (𝑓 “ ran 𝐸))–onto→(ω ∖ ran 𝐸)) → ((𝐸(𝑆 ↾ ran 𝐸)) ∘ (𝑓 ↾ (𝐴 ∖ (𝑓 “ ran 𝐸)))):(𝐴 ∖ (𝑓 “ ran 𝐸))–onto→ω)
7751, 75, 76sylancr 694 . . . . . . . . . 10 (𝑓:𝐴onto→ω → ((𝐸(𝑆 ↾ ran 𝐸)) ∘ (𝑓 ↾ (𝐴 ∖ (𝑓 “ ran 𝐸)))):(𝐴 ∖ (𝑓 “ ran 𝐸))–onto→ω)
78 fowdom 8359 . . . . . . . . . 10 ((((𝐸(𝑆 ↾ ran 𝐸)) ∘ (𝑓 ↾ (𝐴 ∖ (𝑓 “ ran 𝐸)))) ∈ V ∧ ((𝐸(𝑆 ↾ ran 𝐸)) ∘ (𝑓 ↾ (𝐴 ∖ (𝑓 “ ran 𝐸)))):(𝐴 ∖ (𝑓 “ ran 𝐸))–onto→ω) → ω ≼* (𝐴 ∖ (𝑓 “ ran 𝐸)))
7956, 77, 78sylancr 694 . . . . . . . . 9 (𝑓:𝐴onto→ω → ω ≼* (𝐴 ∖ (𝑓 “ ran 𝐸)))
80 difexg 4735 . . . . . . . . . . 11 (𝐴 ∈ V → (𝐴 ∖ (𝑓 “ ran 𝐸)) ∈ V)
81 isfin3-2 9072 . . . . . . . . . . 11 ((𝐴 ∖ (𝑓 “ ran 𝐸)) ∈ V → ((𝐴 ∖ (𝑓 “ ran 𝐸)) ∈ FinIII ↔ ¬ ω ≼* (𝐴 ∖ (𝑓 “ ran 𝐸))))
828, 80, 813syl 18 . . . . . . . . . 10 (𝑓:𝐴onto→ω → ((𝐴 ∖ (𝑓 “ ran 𝐸)) ∈ FinIII ↔ ¬ ω ≼* (𝐴 ∖ (𝑓 “ ran 𝐸))))
8382con2bid 343 . . . . . . . . 9 (𝑓:𝐴onto→ω → (ω ≼* (𝐴 ∖ (𝑓 “ ran 𝐸)) ↔ ¬ (𝐴 ∖ (𝑓 “ ran 𝐸)) ∈ FinIII))
8479, 83mpbid 221 . . . . . . . 8 (𝑓:𝐴onto→ω → ¬ (𝐴 ∖ (𝑓 “ ran 𝐸)) ∈ FinIII)
85 eleq1 2676 . . . . . . . . . . . 12 (𝑦 = (𝑓 “ ran 𝐸) → (𝑦 ∈ FinIII ↔ (𝑓 “ ran 𝐸) ∈ FinIII))
86 difeq2 3684 . . . . . . . . . . . . 13 (𝑦 = (𝑓 “ ran 𝐸) → (𝐴𝑦) = (𝐴 ∖ (𝑓 “ ran 𝐸)))
8786eleq1d 2672 . . . . . . . . . . . 12 (𝑦 = (𝑓 “ ran 𝐸) → ((𝐴𝑦) ∈ FinIII ↔ (𝐴 ∖ (𝑓 “ ran 𝐸)) ∈ FinIII))
8885, 87orbi12d 742 . . . . . . . . . . 11 (𝑦 = (𝑓 “ ran 𝐸) → ((𝑦 ∈ FinIII ∨ (𝐴𝑦) ∈ FinIII) ↔ ((𝑓 “ ran 𝐸) ∈ FinIII ∨ (𝐴 ∖ (𝑓 “ ran 𝐸)) ∈ FinIII)))
8988notbid 307 . . . . . . . . . 10 (𝑦 = (𝑓 “ ran 𝐸) → (¬ (𝑦 ∈ FinIII ∨ (𝐴𝑦) ∈ FinIII) ↔ ¬ ((𝑓 “ ran 𝐸) ∈ FinIII ∨ (𝐴 ∖ (𝑓 “ ran 𝐸)) ∈ FinIII)))
90 ioran 510 . . . . . . . . . 10 (¬ ((𝑓 “ ran 𝐸) ∈ FinIII ∨ (𝐴 ∖ (𝑓 “ ran 𝐸)) ∈ FinIII) ↔ (¬ (𝑓 “ ran 𝐸) ∈ FinIII ∧ ¬ (𝐴 ∖ (𝑓 “ ran 𝐸)) ∈ FinIII))
9189, 90syl6bb 275 . . . . . . . . 9 (𝑦 = (𝑓 “ ran 𝐸) → (¬ (𝑦 ∈ FinIII ∨ (𝐴𝑦) ∈ FinIII) ↔ (¬ (𝑓 “ ran 𝐸) ∈ FinIII ∧ ¬ (𝐴 ∖ (𝑓 “ ran 𝐸)) ∈ FinIII)))
9291rspcev 3282 . . . . . . . 8 (((𝑓 “ ran 𝐸) ∈ 𝒫 𝐴 ∧ (¬ (𝑓 “ ran 𝐸) ∈ FinIII ∧ ¬ (𝐴 ∖ (𝑓 “ ran 𝐸)) ∈ FinIII)) → ∃𝑦 ∈ 𝒫 𝐴 ¬ (𝑦 ∈ FinIII ∨ (𝐴𝑦) ∈ FinIII))
9313, 44, 84, 92syl12anc 1316 . . . . . . 7 (𝑓:𝐴onto→ω → ∃𝑦 ∈ 𝒫 𝐴 ¬ (𝑦 ∈ FinIII ∨ (𝐴𝑦) ∈ FinIII))
94 rexnal 2978 . . . . . . 7 (∃𝑦 ∈ 𝒫 𝐴 ¬ (𝑦 ∈ FinIII ∨ (𝐴𝑦) ∈ FinIII) ↔ ¬ ∀𝑦 ∈ 𝒫 𝐴(𝑦 ∈ FinIII ∨ (𝐴𝑦) ∈ FinIII))
9593, 94sylib 207 . . . . . 6 (𝑓:𝐴onto→ω → ¬ ∀𝑦 ∈ 𝒫 𝐴(𝑦 ∈ FinIII ∨ (𝐴𝑦) ∈ FinIII))
9695exlimiv 1845 . . . . 5 (∃𝑓 𝑓:𝐴onto→ω → ¬ ∀𝑦 ∈ 𝒫 𝐴(𝑦 ∈ FinIII ∨ (𝐴𝑦) ∈ FinIII))
974, 96sylbi 206 . . . 4 (ω ≼* 𝐴 → ¬ ∀𝑦 ∈ 𝒫 𝐴(𝑦 ∈ FinIII ∨ (𝐴𝑦) ∈ FinIII))
9897con2i 133 . . 3 (∀𝑦 ∈ 𝒫 𝐴(𝑦 ∈ FinIII ∨ (𝐴𝑦) ∈ FinIII) → ¬ ω ≼* 𝐴)
99 isfin3-2 9072 . . 3 (𝐴𝑉 → (𝐴 ∈ FinIII ↔ ¬ ω ≼* 𝐴))
10098, 99syl5ibr 235 . 2 (𝐴𝑉 → (∀𝑦 ∈ 𝒫 𝐴(𝑦 ∈ FinIII ∨ (𝐴𝑦) ∈ FinIII) → 𝐴 ∈ FinIII))
101100imp 444 1 ((𝐴𝑉 ∧ ∀𝑦 ∈ 𝒫 𝐴(𝑦 ∈ FinIII ∨ (𝐴𝑦) ∈ FinIII)) → 𝐴 ∈ FinIII)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383   = wceq 1475  wex 1695  wcel 1977  wne 2780  wral 2896  wrex 2897  Vcvv 3173  cdif 3537  wss 3540  c0 3874  𝒫 cpw 4108   class class class wbr 4583  cmpt 4643  ccnv 5037  dom cdm 5038  ran crn 5039  cres 5040  cima 5041  ccom 5042  Oncon0 5640  suc csuc 5642  Fun wfun 5798  wf 5800  1-1wf1 5801  ontowfo 5802  1-1-ontowf1o 5803  (class class class)co 6549  ωcom 6957  2𝑜c2o 7441   ·𝑜 comu 7445  * cwdom 8345  FinIIIcfin3 8986
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-seqom 7430  df-1o 7447  df-2o 7448  df-oadd 7451  df-omul 7452  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-wdom 8347  df-card 8648  df-fin4 8992  df-fin3 8993
This theorem is referenced by:  fin1a2lem8  9112
  Copyright terms: Public domain W3C validator