Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cofunexg | Structured version Visualization version GIF version |
Description: Existence of a composition when the first member is a function. (Contributed by NM, 8-Oct-2007.) |
Ref | Expression |
---|---|
cofunexg | ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐴 ∘ 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relco 5550 | . . 3 ⊢ Rel (𝐴 ∘ 𝐵) | |
2 | relssdmrn 5573 | . . 3 ⊢ (Rel (𝐴 ∘ 𝐵) → (𝐴 ∘ 𝐵) ⊆ (dom (𝐴 ∘ 𝐵) × ran (𝐴 ∘ 𝐵))) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ (𝐴 ∘ 𝐵) ⊆ (dom (𝐴 ∘ 𝐵) × ran (𝐴 ∘ 𝐵)) |
4 | dmcoss 5306 | . . . . 5 ⊢ dom (𝐴 ∘ 𝐵) ⊆ dom 𝐵 | |
5 | dmexg 6989 | . . . . 5 ⊢ (𝐵 ∈ 𝐶 → dom 𝐵 ∈ V) | |
6 | ssexg 4732 | . . . . 5 ⊢ ((dom (𝐴 ∘ 𝐵) ⊆ dom 𝐵 ∧ dom 𝐵 ∈ V) → dom (𝐴 ∘ 𝐵) ∈ V) | |
7 | 4, 5, 6 | sylancr 694 | . . . 4 ⊢ (𝐵 ∈ 𝐶 → dom (𝐴 ∘ 𝐵) ∈ V) |
8 | 7 | adantl 481 | . . 3 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → dom (𝐴 ∘ 𝐵) ∈ V) |
9 | rnco 5558 | . . . 4 ⊢ ran (𝐴 ∘ 𝐵) = ran (𝐴 ↾ ran 𝐵) | |
10 | rnexg 6990 | . . . . . 6 ⊢ (𝐵 ∈ 𝐶 → ran 𝐵 ∈ V) | |
11 | resfunexg 6384 | . . . . . 6 ⊢ ((Fun 𝐴 ∧ ran 𝐵 ∈ V) → (𝐴 ↾ ran 𝐵) ∈ V) | |
12 | 10, 11 | sylan2 490 | . . . . 5 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐴 ↾ ran 𝐵) ∈ V) |
13 | rnexg 6990 | . . . . 5 ⊢ ((𝐴 ↾ ran 𝐵) ∈ V → ran (𝐴 ↾ ran 𝐵) ∈ V) | |
14 | 12, 13 | syl 17 | . . . 4 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → ran (𝐴 ↾ ran 𝐵) ∈ V) |
15 | 9, 14 | syl5eqel 2692 | . . 3 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → ran (𝐴 ∘ 𝐵) ∈ V) |
16 | xpexg 6858 | . . 3 ⊢ ((dom (𝐴 ∘ 𝐵) ∈ V ∧ ran (𝐴 ∘ 𝐵) ∈ V) → (dom (𝐴 ∘ 𝐵) × ran (𝐴 ∘ 𝐵)) ∈ V) | |
17 | 8, 15, 16 | syl2anc 691 | . 2 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → (dom (𝐴 ∘ 𝐵) × ran (𝐴 ∘ 𝐵)) ∈ V) |
18 | ssexg 4732 | . 2 ⊢ (((𝐴 ∘ 𝐵) ⊆ (dom (𝐴 ∘ 𝐵) × ran (𝐴 ∘ 𝐵)) ∧ (dom (𝐴 ∘ 𝐵) × ran (𝐴 ∘ 𝐵)) ∈ V) → (𝐴 ∘ 𝐵) ∈ V) | |
19 | 3, 17, 18 | sylancr 694 | 1 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐴 ∘ 𝐵) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∈ wcel 1977 Vcvv 3173 ⊆ wss 3540 × cxp 5036 dom cdm 5038 ran crn 5039 ↾ cres 5040 ∘ ccom 5042 Rel wrel 5043 Fun wfun 5798 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 |
This theorem is referenced by: cofunex2g 7024 fin1a2lem7 9111 revco 13431 ccatco 13432 lswco 13435 isofval 16240 bcthlem4 22932 sseqval 29777 sinccvglem 30820 pfxco 40301 |
Copyright terms: Public domain | W3C validator |