MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin1a2lem7 Structured version   Unicode version

Theorem fin1a2lem7 8676
Description: Lemma for fin1a2 8685. Split a III-infinite set in two pieces. (Contributed by Stefan O'Rear, 7-Nov-2014.)
Hypotheses
Ref Expression
fin1a2lem.b  |-  E  =  ( x  e.  om  |->  ( 2o  .o  x
) )
fin1a2lem.aa  |-  S  =  ( x  e.  On  |->  suc  x )
Assertion
Ref Expression
fin1a2lem7  |-  ( ( A  e.  V  /\  A. y  e.  ~P  A
( y  e. FinIII  \/  ( A  \  y )  e. FinIII ) )  ->  A  e. FinIII )
Distinct variable groups:    y, A    y, E
Allowed substitution hints:    A( x)    S( x, y)    E( x)    V( x, y)

Proof of Theorem fin1a2lem7
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 peano1 6595 . . . . . 6  |-  (/)  e.  om
2 ne0i 3741 . . . . . 6  |-  ( (/)  e.  om  ->  om  =/=  (/) )
3 brwdomn0 7885 . . . . . 6  |-  ( om  =/=  (/)  ->  ( om  ~<_*  A  <->  E. f  f : A -onto-> om ) )
41, 2, 3mp2b 10 . . . . 5  |-  ( om  ~<_*  A 
<->  E. f  f : A -onto-> om )
5 cnvimass 5287 . . . . . . . . . 10  |-  ( `' f " ran  E
)  C_  dom  f
6 fof 5718 . . . . . . . . . . 11  |-  ( f : A -onto-> om  ->  f : A --> om )
7 fdm 5661 . . . . . . . . . . 11  |-  ( f : A --> om  ->  dom  f  =  A )
86, 7syl 16 . . . . . . . . . 10  |-  ( f : A -onto-> om  ->  dom  f  =  A )
95, 8syl5sseq 3502 . . . . . . . . 9  |-  ( f : A -onto-> om  ->  ( `' f " ran  E )  C_  A )
10 vex 3071 . . . . . . . . . . 11  |-  f  e. 
_V
11 dmfex 6635 . . . . . . . . . . 11  |-  ( ( f  e.  _V  /\  f : A --> om )  ->  A  e.  _V )
1210, 6, 11sylancr 663 . . . . . . . . . 10  |-  ( f : A -onto-> om  ->  A  e.  _V )
13 elpw2g 4553 . . . . . . . . . 10  |-  ( A  e.  _V  ->  (
( `' f " ran  E )  e.  ~P A 
<->  ( `' f " ran  E )  C_  A
) )
1412, 13syl 16 . . . . . . . . 9  |-  ( f : A -onto-> om  ->  ( ( `' f " ran  E )  e.  ~P A 
<->  ( `' f " ran  E )  C_  A
) )
159, 14mpbird 232 . . . . . . . 8  |-  ( f : A -onto-> om  ->  ( `' f " ran  E )  e.  ~P A
)
16 fin1a2lem.b . . . . . . . . . . . . . 14  |-  E  =  ( x  e.  om  |->  ( 2o  .o  x
) )
1716fin1a2lem4 8673 . . . . . . . . . . . . 13  |-  E : om
-1-1-> om
18 f1cnv 5762 . . . . . . . . . . . . 13  |-  ( E : om -1-1-> om  ->  `' E : ran  E -1-1-onto-> om )
19 f1ofo 5746 . . . . . . . . . . . . 13  |-  ( `' E : ran  E -1-1-onto-> om  ->  `' E : ran  E -onto-> om )
2017, 18, 19mp2b 10 . . . . . . . . . . . 12  |-  `' E : ran  E -onto-> om
21 fofun 5719 . . . . . . . . . . . 12  |-  ( `' E : ran  E -onto-> om  ->  Fun  `' E
)
2220, 21ax-mp 5 . . . . . . . . . . 11  |-  Fun  `' E
2310resex 5248 . . . . . . . . . . 11  |-  ( f  |`  ( `' f " ran  E ) )  e. 
_V
24 cofunexg 6641 . . . . . . . . . . 11  |-  ( ( Fun  `' E  /\  ( f  |`  ( `' f " ran  E ) )  e.  _V )  ->  ( `' E  o.  ( f  |`  ( `' f " ran  E ) ) )  e. 
_V )
2522, 23, 24mp2an 672 . . . . . . . . . 10  |-  ( `' E  o.  ( f  |`  ( `' f " ran  E ) ) )  e.  _V
26 fofun 5719 . . . . . . . . . . . . 13  |-  ( f : A -onto-> om  ->  Fun  f )
27 fores 5727 . . . . . . . . . . . . 13  |-  ( ( Fun  f  /\  ( `' f " ran  E )  C_  dom  f )  ->  ( f  |`  ( `' f " ran  E ) ) : ( `' f " ran  E ) -onto-> ( f "
( `' f " ran  E ) ) )
2826, 5, 27sylancl 662 . . . . . . . . . . . 12  |-  ( f : A -onto-> om  ->  ( f  |`  ( `' f " ran  E ) ) : ( `' f " ran  E
) -onto-> ( f "
( `' f " ran  E ) ) )
29 f1f 5704 . . . . . . . . . . . . . . 15  |-  ( E : om -1-1-> om  ->  E : om --> om )
30 frn 5663 . . . . . . . . . . . . . . 15  |-  ( E : om --> om  ->  ran 
E  C_  om )
3117, 29, 30mp2b 10 . . . . . . . . . . . . . 14  |-  ran  E  C_ 
om
32 foimacnv 5756 . . . . . . . . . . . . . 14  |-  ( ( f : A -onto-> om  /\ 
ran  E  C_  om )  ->  ( f " ( `' f " ran  E ) )  =  ran  E )
3331, 32mpan2 671 . . . . . . . . . . . . 13  |-  ( f : A -onto-> om  ->  ( f " ( `' f " ran  E
) )  =  ran  E )
34 foeq3 5716 . . . . . . . . . . . . 13  |-  ( ( f " ( `' f " ran  E
) )  =  ran  E  ->  ( ( f  |`  ( `' f " ran  E ) ) : ( `' f " ran  E ) -onto-> ( f
" ( `' f
" ran  E )
)  <->  ( f  |`  ( `' f " ran  E ) ) : ( `' f " ran  E ) -onto-> ran  E ) )
3533, 34syl 16 . . . . . . . . . . . 12  |-  ( f : A -onto-> om  ->  ( ( f  |`  ( `' f " ran  E ) ) : ( `' f " ran  E ) -onto-> ( f "
( `' f " ran  E ) )  <->  ( f  |`  ( `' f " ran  E ) ) : ( `' f " ran  E ) -onto-> ran  E
) )
3628, 35mpbid 210 . . . . . . . . . . 11  |-  ( f : A -onto-> om  ->  ( f  |`  ( `' f " ran  E ) ) : ( `' f " ran  E
) -onto-> ran  E )
37 foco 5728 . . . . . . . . . . 11  |-  ( ( `' E : ran  E -onto-> om  /\  ( f  |`  ( `' f " ran  E ) ) : ( `' f " ran  E ) -onto-> ran  E )  -> 
( `' E  o.  ( f  |`  ( `' f " ran  E ) ) ) : ( `' f " ran  E ) -onto-> om )
3820, 36, 37sylancr 663 . . . . . . . . . 10  |-  ( f : A -onto-> om  ->  ( `' E  o.  (
f  |`  ( `' f
" ran  E )
) ) : ( `' f " ran  E ) -onto-> om )
39 fowdom 7887 . . . . . . . . . 10  |-  ( ( ( `' E  o.  ( f  |`  ( `' f " ran  E ) ) )  e. 
_V  /\  ( `' E  o.  ( f  |`  ( `' f " ran  E ) ) ) : ( `' f
" ran  E ) -onto-> om )  ->  om  ~<_*  ( `' f " ran  E ) )
4025, 38, 39sylancr 663 . . . . . . . . 9  |-  ( f : A -onto-> om  ->  om  ~<_*  ( `' f " ran  E ) )
41 cnvexg 6624 . . . . . . . . . . . 12  |-  ( f  e.  _V  ->  `' f  e.  _V )
42 imaexg 6615 . . . . . . . . . . . 12  |-  ( `' f  e.  _V  ->  ( `' f " ran  E )  e.  _V )
4310, 41, 42mp2b 10 . . . . . . . . . . 11  |-  ( `' f " ran  E
)  e.  _V
44 isfin3-2 8637 . . . . . . . . . . 11  |-  ( ( `' f " ran  E )  e.  _V  ->  ( ( `' f " ran  E )  e. FinIII  <->  -.  om  ~<_*  ( `' f " ran  E ) ) )
4543, 44ax-mp 5 . . . . . . . . . 10  |-  ( ( `' f " ran  E )  e. FinIII 
<->  -.  om  ~<_*  ( `' f " ran  E ) )
4645con2bii 332 . . . . . . . . 9  |-  ( om  ~<_*  ( `' f " ran  E )  <->  -.  ( `' f " ran  E )  e. FinIII )
4740, 46sylib 196 . . . . . . . 8  |-  ( f : A -onto-> om  ->  -.  ( `' f " ran  E )  e. FinIII )
48 fin1a2lem.aa . . . . . . . . . . . . . . 15  |-  S  =  ( x  e.  On  |->  suc  x )
4916, 48fin1a2lem6 8675 . . . . . . . . . . . . . 14  |-  ( S  |`  ran  E ) : ran  E -1-1-onto-> ( om  \  ran  E )
50 f1ocnv 5751 . . . . . . . . . . . . . 14  |-  ( ( S  |`  ran  E ) : ran  E -1-1-onto-> ( om 
\  ran  E )  ->  `' ( S  |`  ran  E ) : ( om  \  ran  E
)
-1-1-onto-> ran  E )
51 f1ofo 5746 . . . . . . . . . . . . . 14  |-  ( `' ( S  |`  ran  E
) : ( om 
\  ran  E ) -1-1-onto-> ran  E  ->  `' ( S  |`  ran  E ) : ( om  \  ran  E ) -onto-> ran  E )
5249, 50, 51mp2b 10 . . . . . . . . . . . . 13  |-  `' ( S  |`  ran  E ) : ( om  \  ran  E ) -onto-> ran  E
53 foco 5728 . . . . . . . . . . . . 13  |-  ( ( `' E : ran  E -onto-> om  /\  `' ( S  |`  ran  E ) : ( om  \  ran  E ) -onto-> ran  E )  -> 
( `' E  o.  `' ( S  |`  ran  E ) ) : ( om  \  ran  E ) -onto-> om )
5420, 52, 53mp2an 672 . . . . . . . . . . . 12  |-  ( `' E  o.  `' ( S  |`  ran  E ) ) : ( om 
\  ran  E ) -onto-> om
55 fofun 5719 . . . . . . . . . . . 12  |-  ( ( `' E  o.  `' ( S  |`  ran  E
) ) : ( om  \  ran  E
) -onto-> om  ->  Fun  ( `' E  o.  `' ( S  |`  ran  E ) ) )
5654, 55ax-mp 5 . . . . . . . . . . 11  |-  Fun  ( `' E  o.  `' ( S  |`  ran  E
) )
5710resex 5248 . . . . . . . . . . 11  |-  ( f  |`  ( A  \  ( `' f " ran  E ) ) )  e. 
_V
58 cofunexg 6641 . . . . . . . . . . 11  |-  ( ( Fun  ( `' E  o.  `' ( S  |`  ran  E ) )  /\  ( f  |`  ( A  \  ( `' f
" ran  E )
) )  e.  _V )  ->  ( ( `' E  o.  `' ( S  |`  ran  E ) )  o.  ( f  |`  ( A  \  ( `' f " ran  E ) ) ) )  e.  _V )
5956, 57, 58mp2an 672 . . . . . . . . . 10  |-  ( ( `' E  o.  `' ( S  |`  ran  E
) )  o.  (
f  |`  ( A  \ 
( `' f " ran  E ) ) ) )  e.  _V
60 difss 3581 . . . . . . . . . . . . . 14  |-  ( A 
\  ( `' f
" ran  E )
)  C_  A
6160, 8syl5sseqr 3503 . . . . . . . . . . . . 13  |-  ( f : A -onto-> om  ->  ( A  \  ( `' f " ran  E
) )  C_  dom  f )
62 fores 5727 . . . . . . . . . . . . 13  |-  ( ( Fun  f  /\  ( A  \  ( `' f
" ran  E )
)  C_  dom  f )  ->  ( f  |`  ( A  \  ( `' f " ran  E ) ) ) : ( A  \  ( `' f " ran  E ) ) -onto-> ( f
" ( A  \ 
( `' f " ran  E ) ) ) )
6326, 61, 62syl2anc 661 . . . . . . . . . . . 12  |-  ( f : A -onto-> om  ->  ( f  |`  ( A  \  ( `' f " ran  E ) ) ) : ( A  \ 
( `' f " ran  E ) ) -onto-> ( f " ( A 
\  ( `' f
" ran  E )
) ) )
64 funcnvcnv 5574 . . . . . . . . . . . . . . . 16  |-  ( Fun  f  ->  Fun  `' `' f )
65 imadif 5591 . . . . . . . . . . . . . . . 16  |-  ( Fun  `' `' f  ->  ( `' f " ( om 
\  ran  E )
)  =  ( ( `' f " om )  \  ( `' f
" ran  E )
) )
6626, 64, 653syl 20 . . . . . . . . . . . . . . 15  |-  ( f : A -onto-> om  ->  ( `' f " ( om  \  ran  E ) )  =  ( ( `' f " om )  \  ( `' f
" ran  E )
) )
6766imaeq2d 5267 . . . . . . . . . . . . . 14  |-  ( f : A -onto-> om  ->  ( f " ( `' f " ( om 
\  ran  E )
) )  =  ( f " ( ( `' f " om )  \  ( `' f
" ran  E )
) ) )
68 difss 3581 . . . . . . . . . . . . . . 15  |-  ( om 
\  ran  E )  C_ 
om
69 foimacnv 5756 . . . . . . . . . . . . . . 15  |-  ( ( f : A -onto-> om  /\  ( om  \  ran  E )  C_  om )  ->  ( f " ( `' f " ( om  \  ran  E ) ) )  =  ( om  \  ran  E
) )
7068, 69mpan2 671 . . . . . . . . . . . . . 14  |-  ( f : A -onto-> om  ->  ( f " ( `' f " ( om 
\  ran  E )
) )  =  ( om  \  ran  E
) )
71 fimacnv 5934 . . . . . . . . . . . . . . . . 17  |-  ( f : A --> om  ->  ( `' f " om )  =  A )
726, 71syl 16 . . . . . . . . . . . . . . . 16  |-  ( f : A -onto-> om  ->  ( `' f " om )  =  A )
7372difeq1d 3571 . . . . . . . . . . . . . . 15  |-  ( f : A -onto-> om  ->  ( ( `' f " om )  \  ( `' f " ran  E ) )  =  ( A  \  ( `' f " ran  E
) ) )
7473imaeq2d 5267 . . . . . . . . . . . . . 14  |-  ( f : A -onto-> om  ->  ( f " ( ( `' f " om )  \  ( `' f
" ran  E )
) )  =  ( f " ( A 
\  ( `' f
" ran  E )
) ) )
7567, 70, 743eqtr3rd 2501 . . . . . . . . . . . . 13  |-  ( f : A -onto-> om  ->  ( f " ( A 
\  ( `' f
" ran  E )
) )  =  ( om  \  ran  E
) )
76 foeq3 5716 . . . . . . . . . . . . 13  |-  ( ( f " ( A 
\  ( `' f
" ran  E )
) )  =  ( om  \  ran  E
)  ->  ( (
f  |`  ( A  \ 
( `' f " ran  E ) ) ) : ( A  \ 
( `' f " ran  E ) ) -onto-> ( f " ( A 
\  ( `' f
" ran  E )
) )  <->  ( f  |`  ( A  \  ( `' f " ran  E ) ) ) : ( A  \  ( `' f " ran  E ) ) -onto-> ( om 
\  ran  E )
) )
7775, 76syl 16 . . . . . . . . . . . 12  |-  ( f : A -onto-> om  ->  ( ( f  |`  ( A  \  ( `' f
" ran  E )
) ) : ( A  \  ( `' f " ran  E
) ) -onto-> ( f
" ( A  \ 
( `' f " ran  E ) ) )  <-> 
( f  |`  ( A  \  ( `' f
" ran  E )
) ) : ( A  \  ( `' f " ran  E
) ) -onto-> ( om 
\  ran  E )
) )
7863, 77mpbid 210 . . . . . . . . . . 11  |-  ( f : A -onto-> om  ->  ( f  |`  ( A  \  ( `' f " ran  E ) ) ) : ( A  \ 
( `' f " ran  E ) ) -onto-> ( om  \  ran  E
) )
79 foco 5728 . . . . . . . . . . 11  |-  ( ( ( `' E  o.  `' ( S  |`  ran  E ) ) : ( om  \  ran  E ) -onto-> om  /\  ( f  |`  ( A  \  ( `' f " ran  E ) ) ) : ( A  \  ( `' f " ran  E ) ) -onto-> ( om 
\  ran  E )
)  ->  ( ( `' E  o.  `' ( S  |`  ran  E
) )  o.  (
f  |`  ( A  \ 
( `' f " ran  E ) ) ) ) : ( A 
\  ( `' f
" ran  E )
) -onto-> om )
8054, 78, 79sylancr 663 . . . . . . . . . 10  |-  ( f : A -onto-> om  ->  ( ( `' E  o.  `' ( S  |`  ran  E ) )  o.  ( f  |`  ( A  \  ( `' f
" ran  E )
) ) ) : ( A  \  ( `' f " ran  E ) ) -onto-> om )
81 fowdom 7887 . . . . . . . . . 10  |-  ( ( ( ( `' E  o.  `' ( S  |`  ran  E ) )  o.  ( f  |`  ( A  \  ( `' f
" ran  E )
) ) )  e. 
_V  /\  ( ( `' E  o.  `' ( S  |`  ran  E
) )  o.  (
f  |`  ( A  \ 
( `' f " ran  E ) ) ) ) : ( A 
\  ( `' f
" ran  E )
) -onto-> om )  ->  om  ~<_*  ( A  \  ( `' f " ran  E ) ) )
8259, 80, 81sylancr 663 . . . . . . . . 9  |-  ( f : A -onto-> om  ->  om  ~<_*  ( A  \  ( `' f " ran  E ) ) )
83 difexg 4538 . . . . . . . . . . 11  |-  ( A  e.  _V  ->  ( A  \  ( `' f
" ran  E )
)  e.  _V )
84 isfin3-2 8637 . . . . . . . . . . 11  |-  ( ( A  \  ( `' f " ran  E
) )  e.  _V  ->  ( ( A  \ 
( `' f " ran  E ) )  e. FinIII  <->  -.  om  ~<_*  ( A  \  ( `' f " ran  E ) ) ) )
8512, 83, 843syl 20 . . . . . . . . . 10  |-  ( f : A -onto-> om  ->  ( ( A  \  ( `' f " ran  E ) )  e. FinIII  <->  -.  om  ~<_*  ( A  \  ( `' f " ran  E ) ) ) )
8685con2bid 329 . . . . . . . . 9  |-  ( f : A -onto-> om  ->  ( om  ~<_*  ( A  \  ( `' f " ran  E ) )  <->  -.  ( A  \  ( `' f
" ran  E )
)  e. FinIII ) )
8782, 86mpbid 210 . . . . . . . 8  |-  ( f : A -onto-> om  ->  -.  ( A  \  ( `' f " ran  E ) )  e. FinIII )
88 eleq1 2523 . . . . . . . . . . . 12  |-  ( y  =  ( `' f
" ran  E )  ->  ( y  e. FinIII  <->  ( `' f " ran  E )  e. FinIII ) )
89 difeq2 3566 . . . . . . . . . . . . 13  |-  ( y  =  ( `' f
" ran  E )  ->  ( A  \  y
)  =  ( A 
\  ( `' f
" ran  E )
) )
9089eleq1d 2520 . . . . . . . . . . . 12  |-  ( y  =  ( `' f
" ran  E )  ->  ( ( A  \ 
y )  e. FinIII  <->  ( A  \  ( `' f " ran  E ) )  e. FinIII ) )
9188, 90orbi12d 709 . . . . . . . . . . 11  |-  ( y  =  ( `' f
" ran  E )  ->  ( ( y  e. FinIII  \/  ( A  \  y
)  e. FinIII )  <->  ( ( `' f " ran  E )  e. FinIII  \/  ( A  \  ( `' f " ran  E ) )  e. FinIII ) ) )
9291notbid 294 . . . . . . . . . 10  |-  ( y  =  ( `' f
" ran  E )  ->  ( -.  ( y  e. FinIII  \/  ( A  \ 
y )  e. FinIII )  <->  -.  (
( `' f " ran  E )  e. FinIII  \/  ( A  \  ( `' f
" ran  E )
)  e. FinIII ) ) )
93 ioran 490 . . . . . . . . . 10  |-  ( -.  ( ( `' f
" ran  E )  e. FinIII  \/  ( A  \  ( `' f " ran  E ) )  e. FinIII )  <->  ( -.  ( `' f " ran  E )  e. FinIII  /\  -.  ( A  \  ( `' f
" ran  E )
)  e. FinIII ) )
9492, 93syl6bb 261 . . . . . . . . 9  |-  ( y  =  ( `' f
" ran  E )  ->  ( -.  ( y  e. FinIII  \/  ( A  \ 
y )  e. FinIII )  <->  ( -.  ( `' f " ran  E )  e. FinIII  /\  -.  ( A  \  ( `' f
" ran  E )
)  e. FinIII ) ) )
9594rspcev 3169 . . . . . . . 8  |-  ( ( ( `' f " ran  E )  e.  ~P A  /\  ( -.  ( `' f " ran  E )  e. FinIII  /\  -.  ( A  \  ( `' f
" ran  E )
)  e. FinIII ) )  ->  E. y  e.  ~P  A  -.  ( y  e. FinIII  \/  ( A  \  y
)  e. FinIII ) )
9615, 47, 87, 95syl12anc 1217 . . . . . . 7  |-  ( f : A -onto-> om  ->  E. y  e.  ~P  A  -.  ( y  e. FinIII  \/  ( A  \  y )  e. FinIII ) )
97 rexnal 2865 . . . . . . 7  |-  ( E. y  e.  ~P  A  -.  ( y  e. FinIII  \/  ( A  \  y )  e. FinIII )  <->  -.  A. y  e.  ~P  A ( y  e. FinIII  \/  ( A  \  y
)  e. FinIII ) )
9896, 97sylib 196 . . . . . 6  |-  ( f : A -onto-> om  ->  -. 
A. y  e.  ~P  A ( y  e. FinIII  \/  ( A  \  y
)  e. FinIII ) )
9998exlimiv 1689 . . . . 5  |-  ( E. f  f : A -onto-> om  ->  -.  A. y  e.  ~P  A ( y  e. FinIII  \/  ( A  \ 
y )  e. FinIII ) )
1004, 99sylbi 195 . . . 4  |-  ( om  ~<_*  A  ->  -.  A. y  e.  ~P  A ( y  e. FinIII  \/  ( A  \ 
y )  e. FinIII ) )
101100con2i 120 . . 3  |-  ( A. y  e.  ~P  A
( y  e. FinIII  \/  ( A  \  y )  e. FinIII )  ->  -.  om  ~<_*  A )
102 isfin3-2 8637 . . 3  |-  ( A  e.  V  ->  ( A  e. FinIII 
<->  -.  om  ~<_*  A ) )
103101, 102syl5ibr 221 . 2  |-  ( A  e.  V  ->  ( A. y  e.  ~P  A ( y  e. FinIII  \/  ( A  \  y
)  e. FinIII )  ->  A  e. FinIII ) )
104103imp 429 1  |-  ( ( A  e.  V  /\  A. y  e.  ~P  A
( y  e. FinIII  \/  ( A  \  y )  e. FinIII ) )  ->  A  e. FinIII )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1370   E.wex 1587    e. wcel 1758    =/= wne 2644   A.wral 2795   E.wrex 2796   _Vcvv 3068    \ cdif 3423    C_ wss 3426   (/)c0 3735   ~Pcpw 3958   class class class wbr 4390    |-> cmpt 4448   Oncon0 4817   suc csuc 4819   `'ccnv 4937   dom cdm 4938   ran crn 4939    |` cres 4940   "cima 4941    o. ccom 4942   Fun wfun 5510   -->wf 5512   -1-1->wf1 5513   -onto->wfo 5514   -1-1-onto->wf1o 5515  (class class class)co 6190   omcom 6576   2oc2o 7014    .o comu 7018    ~<_* cwdom 7873  FinIIIcfin3 8551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4501  ax-sep 4511  ax-nul 4519  ax-pow 4568  ax-pr 4629  ax-un 6472
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-ral 2800  df-rex 2801  df-reu 2802  df-rmo 2803  df-rab 2804  df-v 3070  df-sbc 3285  df-csb 3387  df-dif 3429  df-un 3431  df-in 3433  df-ss 3440  df-pss 3442  df-nul 3736  df-if 3890  df-pw 3960  df-sn 3976  df-pr 3978  df-tp 3980  df-op 3982  df-uni 4190  df-int 4227  df-iun 4271  df-br 4391  df-opab 4449  df-mpt 4450  df-tr 4484  df-eprel 4730  df-id 4734  df-po 4739  df-so 4740  df-fr 4777  df-se 4778  df-we 4779  df-ord 4820  df-on 4821  df-lim 4822  df-suc 4823  df-xp 4944  df-rel 4945  df-cnv 4946  df-co 4947  df-dm 4948  df-rn 4949  df-res 4950  df-ima 4951  df-iota 5479  df-fun 5518  df-fn 5519  df-f 5520  df-f1 5521  df-fo 5522  df-f1o 5523  df-fv 5524  df-isom 5525  df-riota 6151  df-ov 6193  df-oprab 6194  df-mpt2 6195  df-om 6577  df-1st 6677  df-2nd 6678  df-recs 6932  df-rdg 6966  df-seqom 7003  df-1o 7020  df-2o 7021  df-oadd 7024  df-omul 7025  df-er 7201  df-map 7316  df-en 7411  df-dom 7412  df-sdom 7413  df-fin 7414  df-wdom 7875  df-card 8210  df-fin4 8557  df-fin3 8558
This theorem is referenced by:  fin1a2lem8  8677
  Copyright terms: Public domain W3C validator