Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  foco Structured version   Visualization version   GIF version

Theorem foco 6038
 Description: Composition of onto functions. (Contributed by NM, 22-Mar-2006.)
Assertion
Ref Expression
foco ((𝐹:𝐵onto𝐶𝐺:𝐴onto𝐵) → (𝐹𝐺):𝐴onto𝐶)

Proof of Theorem foco
StepHypRef Expression
1 dffo2 6032 . . 3 (𝐹:𝐵onto𝐶 ↔ (𝐹:𝐵𝐶 ∧ ran 𝐹 = 𝐶))
2 dffo2 6032 . . 3 (𝐺:𝐴onto𝐵 ↔ (𝐺:𝐴𝐵 ∧ ran 𝐺 = 𝐵))
3 fco 5971 . . . . 5 ((𝐹:𝐵𝐶𝐺:𝐴𝐵) → (𝐹𝐺):𝐴𝐶)
43ad2ant2r 779 . . . 4 (((𝐹:𝐵𝐶 ∧ ran 𝐹 = 𝐶) ∧ (𝐺:𝐴𝐵 ∧ ran 𝐺 = 𝐵)) → (𝐹𝐺):𝐴𝐶)
5 fdm 5964 . . . . . . . 8 (𝐹:𝐵𝐶 → dom 𝐹 = 𝐵)
6 eqtr3 2631 . . . . . . . 8 ((dom 𝐹 = 𝐵 ∧ ran 𝐺 = 𝐵) → dom 𝐹 = ran 𝐺)
75, 6sylan 487 . . . . . . 7 ((𝐹:𝐵𝐶 ∧ ran 𝐺 = 𝐵) → dom 𝐹 = ran 𝐺)
8 rncoeq 5310 . . . . . . . . 9 (dom 𝐹 = ran 𝐺 → ran (𝐹𝐺) = ran 𝐹)
98eqeq1d 2612 . . . . . . . 8 (dom 𝐹 = ran 𝐺 → (ran (𝐹𝐺) = 𝐶 ↔ ran 𝐹 = 𝐶))
109biimpar 501 . . . . . . 7 ((dom 𝐹 = ran 𝐺 ∧ ran 𝐹 = 𝐶) → ran (𝐹𝐺) = 𝐶)
117, 10sylan 487 . . . . . 6 (((𝐹:𝐵𝐶 ∧ ran 𝐺 = 𝐵) ∧ ran 𝐹 = 𝐶) → ran (𝐹𝐺) = 𝐶)
1211an32s 842 . . . . 5 (((𝐹:𝐵𝐶 ∧ ran 𝐹 = 𝐶) ∧ ran 𝐺 = 𝐵) → ran (𝐹𝐺) = 𝐶)
1312adantrl 748 . . . 4 (((𝐹:𝐵𝐶 ∧ ran 𝐹 = 𝐶) ∧ (𝐺:𝐴𝐵 ∧ ran 𝐺 = 𝐵)) → ran (𝐹𝐺) = 𝐶)
144, 13jca 553 . . 3 (((𝐹:𝐵𝐶 ∧ ran 𝐹 = 𝐶) ∧ (𝐺:𝐴𝐵 ∧ ran 𝐺 = 𝐵)) → ((𝐹𝐺):𝐴𝐶 ∧ ran (𝐹𝐺) = 𝐶))
151, 2, 14syl2anb 495 . 2 ((𝐹:𝐵onto𝐶𝐺:𝐴onto𝐵) → ((𝐹𝐺):𝐴𝐶 ∧ ran (𝐹𝐺) = 𝐶))
16 dffo2 6032 . 2 ((𝐹𝐺):𝐴onto𝐶 ↔ ((𝐹𝐺):𝐴𝐶 ∧ ran (𝐹𝐺) = 𝐶))
1715, 16sylibr 223 1 ((𝐹:𝐵onto𝐶𝐺:𝐴onto𝐵) → (𝐹𝐺):𝐴onto𝐶)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1475  dom cdm 5038  ran crn 5039   ∘ ccom 5042  ⟶wf 5800  –onto→wfo 5802 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-br 4584  df-opab 4644  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-fun 5806  df-fn 5807  df-f 5808  df-fo 5810 This theorem is referenced by:  f1oco  6072  wdomtr  8363  fin1a2lem7  9111  cofull  16417  uniiccdif  23152
 Copyright terms: Public domain W3C validator