MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniiccdif Structured version   Visualization version   GIF version

Theorem uniiccdif 23152
Description: A union of closed intervals differs from the equivalent union of open intervals by a nullset. (Contributed by Mario Carneiro, 25-Mar-2015.)
Hypothesis
Ref Expression
uniioombl.1 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
Assertion
Ref Expression
uniiccdif (𝜑 → ( ran ((,) ∘ 𝐹) ⊆ ran ([,] ∘ 𝐹) ∧ (vol*‘( ran ([,] ∘ 𝐹) ∖ ran ((,) ∘ 𝐹))) = 0))

Proof of Theorem uniiccdif
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ssun1 3738 . . 3 ran ((,) ∘ 𝐹) ⊆ ( ran ((,) ∘ 𝐹) ∪ ((1st “ ran 𝐹) ∪ (2nd “ ran 𝐹)))
2 uniioombl.1 . . . . . . . 8 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
3 ovolfcl 23042 . . . . . . . 8 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → ((1st ‘(𝐹𝑥)) ∈ ℝ ∧ (2nd ‘(𝐹𝑥)) ∈ ℝ ∧ (1st ‘(𝐹𝑥)) ≤ (2nd ‘(𝐹𝑥))))
42, 3sylan 487 . . . . . . 7 ((𝜑𝑥 ∈ ℕ) → ((1st ‘(𝐹𝑥)) ∈ ℝ ∧ (2nd ‘(𝐹𝑥)) ∈ ℝ ∧ (1st ‘(𝐹𝑥)) ≤ (2nd ‘(𝐹𝑥))))
5 rexr 9964 . . . . . . . 8 ((1st ‘(𝐹𝑥)) ∈ ℝ → (1st ‘(𝐹𝑥)) ∈ ℝ*)
6 rexr 9964 . . . . . . . 8 ((2nd ‘(𝐹𝑥)) ∈ ℝ → (2nd ‘(𝐹𝑥)) ∈ ℝ*)
7 id 22 . . . . . . . 8 ((1st ‘(𝐹𝑥)) ≤ (2nd ‘(𝐹𝑥)) → (1st ‘(𝐹𝑥)) ≤ (2nd ‘(𝐹𝑥)))
8 prunioo 12172 . . . . . . . 8 (((1st ‘(𝐹𝑥)) ∈ ℝ* ∧ (2nd ‘(𝐹𝑥)) ∈ ℝ* ∧ (1st ‘(𝐹𝑥)) ≤ (2nd ‘(𝐹𝑥))) → (((1st ‘(𝐹𝑥))(,)(2nd ‘(𝐹𝑥))) ∪ {(1st ‘(𝐹𝑥)), (2nd ‘(𝐹𝑥))}) = ((1st ‘(𝐹𝑥))[,](2nd ‘(𝐹𝑥))))
95, 6, 7, 8syl3an 1360 . . . . . . 7 (((1st ‘(𝐹𝑥)) ∈ ℝ ∧ (2nd ‘(𝐹𝑥)) ∈ ℝ ∧ (1st ‘(𝐹𝑥)) ≤ (2nd ‘(𝐹𝑥))) → (((1st ‘(𝐹𝑥))(,)(2nd ‘(𝐹𝑥))) ∪ {(1st ‘(𝐹𝑥)), (2nd ‘(𝐹𝑥))}) = ((1st ‘(𝐹𝑥))[,](2nd ‘(𝐹𝑥))))
104, 9syl 17 . . . . . 6 ((𝜑𝑥 ∈ ℕ) → (((1st ‘(𝐹𝑥))(,)(2nd ‘(𝐹𝑥))) ∪ {(1st ‘(𝐹𝑥)), (2nd ‘(𝐹𝑥))}) = ((1st ‘(𝐹𝑥))[,](2nd ‘(𝐹𝑥))))
11 fvco3 6185 . . . . . . . . 9 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → (((,) ∘ 𝐹)‘𝑥) = ((,)‘(𝐹𝑥)))
122, 11sylan 487 . . . . . . . 8 ((𝜑𝑥 ∈ ℕ) → (((,) ∘ 𝐹)‘𝑥) = ((,)‘(𝐹𝑥)))
13 inss2 3796 . . . . . . . . . . . 12 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)
142ffvelrnda 6267 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℕ) → (𝐹𝑥) ∈ ( ≤ ∩ (ℝ × ℝ)))
1513, 14sseldi 3566 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℕ) → (𝐹𝑥) ∈ (ℝ × ℝ))
16 1st2nd2 7096 . . . . . . . . . . 11 ((𝐹𝑥) ∈ (ℝ × ℝ) → (𝐹𝑥) = ⟨(1st ‘(𝐹𝑥)), (2nd ‘(𝐹𝑥))⟩)
1715, 16syl 17 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℕ) → (𝐹𝑥) = ⟨(1st ‘(𝐹𝑥)), (2nd ‘(𝐹𝑥))⟩)
1817fveq2d 6107 . . . . . . . . 9 ((𝜑𝑥 ∈ ℕ) → ((,)‘(𝐹𝑥)) = ((,)‘⟨(1st ‘(𝐹𝑥)), (2nd ‘(𝐹𝑥))⟩))
19 df-ov 6552 . . . . . . . . 9 ((1st ‘(𝐹𝑥))(,)(2nd ‘(𝐹𝑥))) = ((,)‘⟨(1st ‘(𝐹𝑥)), (2nd ‘(𝐹𝑥))⟩)
2018, 19syl6eqr 2662 . . . . . . . 8 ((𝜑𝑥 ∈ ℕ) → ((,)‘(𝐹𝑥)) = ((1st ‘(𝐹𝑥))(,)(2nd ‘(𝐹𝑥))))
2112, 20eqtrd 2644 . . . . . . 7 ((𝜑𝑥 ∈ ℕ) → (((,) ∘ 𝐹)‘𝑥) = ((1st ‘(𝐹𝑥))(,)(2nd ‘(𝐹𝑥))))
22 df-pr 4128 . . . . . . . 8 {((1st𝐹)‘𝑥), ((2nd𝐹)‘𝑥)} = ({((1st𝐹)‘𝑥)} ∪ {((2nd𝐹)‘𝑥)})
23 fvco3 6185 . . . . . . . . . 10 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → ((1st𝐹)‘𝑥) = (1st ‘(𝐹𝑥)))
242, 23sylan 487 . . . . . . . . 9 ((𝜑𝑥 ∈ ℕ) → ((1st𝐹)‘𝑥) = (1st ‘(𝐹𝑥)))
25 fvco3 6185 . . . . . . . . . 10 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → ((2nd𝐹)‘𝑥) = (2nd ‘(𝐹𝑥)))
262, 25sylan 487 . . . . . . . . 9 ((𝜑𝑥 ∈ ℕ) → ((2nd𝐹)‘𝑥) = (2nd ‘(𝐹𝑥)))
2724, 26preq12d 4220 . . . . . . . 8 ((𝜑𝑥 ∈ ℕ) → {((1st𝐹)‘𝑥), ((2nd𝐹)‘𝑥)} = {(1st ‘(𝐹𝑥)), (2nd ‘(𝐹𝑥))})
2822, 27syl5eqr 2658 . . . . . . 7 ((𝜑𝑥 ∈ ℕ) → ({((1st𝐹)‘𝑥)} ∪ {((2nd𝐹)‘𝑥)}) = {(1st ‘(𝐹𝑥)), (2nd ‘(𝐹𝑥))})
2921, 28uneq12d 3730 . . . . . 6 ((𝜑𝑥 ∈ ℕ) → ((((,) ∘ 𝐹)‘𝑥) ∪ ({((1st𝐹)‘𝑥)} ∪ {((2nd𝐹)‘𝑥)})) = (((1st ‘(𝐹𝑥))(,)(2nd ‘(𝐹𝑥))) ∪ {(1st ‘(𝐹𝑥)), (2nd ‘(𝐹𝑥))}))
30 fvco3 6185 . . . . . . . 8 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → (([,] ∘ 𝐹)‘𝑥) = ([,]‘(𝐹𝑥)))
312, 30sylan 487 . . . . . . 7 ((𝜑𝑥 ∈ ℕ) → (([,] ∘ 𝐹)‘𝑥) = ([,]‘(𝐹𝑥)))
3217fveq2d 6107 . . . . . . . 8 ((𝜑𝑥 ∈ ℕ) → ([,]‘(𝐹𝑥)) = ([,]‘⟨(1st ‘(𝐹𝑥)), (2nd ‘(𝐹𝑥))⟩))
33 df-ov 6552 . . . . . . . 8 ((1st ‘(𝐹𝑥))[,](2nd ‘(𝐹𝑥))) = ([,]‘⟨(1st ‘(𝐹𝑥)), (2nd ‘(𝐹𝑥))⟩)
3432, 33syl6eqr 2662 . . . . . . 7 ((𝜑𝑥 ∈ ℕ) → ([,]‘(𝐹𝑥)) = ((1st ‘(𝐹𝑥))[,](2nd ‘(𝐹𝑥))))
3531, 34eqtrd 2644 . . . . . 6 ((𝜑𝑥 ∈ ℕ) → (([,] ∘ 𝐹)‘𝑥) = ((1st ‘(𝐹𝑥))[,](2nd ‘(𝐹𝑥))))
3610, 29, 353eqtr4rd 2655 . . . . 5 ((𝜑𝑥 ∈ ℕ) → (([,] ∘ 𝐹)‘𝑥) = ((((,) ∘ 𝐹)‘𝑥) ∪ ({((1st𝐹)‘𝑥)} ∪ {((2nd𝐹)‘𝑥)})))
3736iuneq2dv 4478 . . . 4 (𝜑 𝑥 ∈ ℕ (([,] ∘ 𝐹)‘𝑥) = 𝑥 ∈ ℕ ((((,) ∘ 𝐹)‘𝑥) ∪ ({((1st𝐹)‘𝑥)} ∪ {((2nd𝐹)‘𝑥)})))
38 iccf 12143 . . . . . . 7 [,]:(ℝ* × ℝ*)⟶𝒫 ℝ*
39 ffn 5958 . . . . . . 7 ([,]:(ℝ* × ℝ*)⟶𝒫 ℝ* → [,] Fn (ℝ* × ℝ*))
4038, 39ax-mp 5 . . . . . 6 [,] Fn (ℝ* × ℝ*)
41 rexpssxrxp 9963 . . . . . . . 8 (ℝ × ℝ) ⊆ (ℝ* × ℝ*)
4213, 41sstri 3577 . . . . . . 7 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)
43 fss 5969 . . . . . . 7 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)) → 𝐹:ℕ⟶(ℝ* × ℝ*))
442, 42, 43sylancl 693 . . . . . 6 (𝜑𝐹:ℕ⟶(ℝ* × ℝ*))
45 fnfco 5982 . . . . . 6 (([,] Fn (ℝ* × ℝ*) ∧ 𝐹:ℕ⟶(ℝ* × ℝ*)) → ([,] ∘ 𝐹) Fn ℕ)
4640, 44, 45sylancr 694 . . . . 5 (𝜑 → ([,] ∘ 𝐹) Fn ℕ)
47 fniunfv 6409 . . . . 5 (([,] ∘ 𝐹) Fn ℕ → 𝑥 ∈ ℕ (([,] ∘ 𝐹)‘𝑥) = ran ([,] ∘ 𝐹))
4846, 47syl 17 . . . 4 (𝜑 𝑥 ∈ ℕ (([,] ∘ 𝐹)‘𝑥) = ran ([,] ∘ 𝐹))
49 iunun 4540 . . . . 5 𝑥 ∈ ℕ ((((,) ∘ 𝐹)‘𝑥) ∪ ({((1st𝐹)‘𝑥)} ∪ {((2nd𝐹)‘𝑥)})) = ( 𝑥 ∈ ℕ (((,) ∘ 𝐹)‘𝑥) ∪ 𝑥 ∈ ℕ ({((1st𝐹)‘𝑥)} ∪ {((2nd𝐹)‘𝑥)}))
50 ioof 12142 . . . . . . . . 9 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
51 ffn 5958 . . . . . . . . 9 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*))
5250, 51ax-mp 5 . . . . . . . 8 (,) Fn (ℝ* × ℝ*)
53 fnfco 5982 . . . . . . . 8 (((,) Fn (ℝ* × ℝ*) ∧ 𝐹:ℕ⟶(ℝ* × ℝ*)) → ((,) ∘ 𝐹) Fn ℕ)
5452, 44, 53sylancr 694 . . . . . . 7 (𝜑 → ((,) ∘ 𝐹) Fn ℕ)
55 fniunfv 6409 . . . . . . 7 (((,) ∘ 𝐹) Fn ℕ → 𝑥 ∈ ℕ (((,) ∘ 𝐹)‘𝑥) = ran ((,) ∘ 𝐹))
5654, 55syl 17 . . . . . 6 (𝜑 𝑥 ∈ ℕ (((,) ∘ 𝐹)‘𝑥) = ran ((,) ∘ 𝐹))
57 iunun 4540 . . . . . . 7 𝑥 ∈ ℕ ({((1st𝐹)‘𝑥)} ∪ {((2nd𝐹)‘𝑥)}) = ( 𝑥 ∈ ℕ {((1st𝐹)‘𝑥)} ∪ 𝑥 ∈ ℕ {((2nd𝐹)‘𝑥)})
58 fo1st 7079 . . . . . . . . . . . . . 14 1st :V–onto→V
59 fofn 6030 . . . . . . . . . . . . . 14 (1st :V–onto→V → 1st Fn V)
6058, 59ax-mp 5 . . . . . . . . . . . . 13 1st Fn V
61 ssv 3588 . . . . . . . . . . . . . 14 ( ≤ ∩ (ℝ × ℝ)) ⊆ V
62 fss 5969 . . . . . . . . . . . . . 14 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ ( ≤ ∩ (ℝ × ℝ)) ⊆ V) → 𝐹:ℕ⟶V)
632, 61, 62sylancl 693 . . . . . . . . . . . . 13 (𝜑𝐹:ℕ⟶V)
64 fnfco 5982 . . . . . . . . . . . . 13 ((1st Fn V ∧ 𝐹:ℕ⟶V) → (1st𝐹) Fn ℕ)
6560, 63, 64sylancr 694 . . . . . . . . . . . 12 (𝜑 → (1st𝐹) Fn ℕ)
66 fnfun 5902 . . . . . . . . . . . 12 ((1st𝐹) Fn ℕ → Fun (1st𝐹))
6765, 66syl 17 . . . . . . . . . . 11 (𝜑 → Fun (1st𝐹))
68 fndm 5904 . . . . . . . . . . . 12 ((1st𝐹) Fn ℕ → dom (1st𝐹) = ℕ)
69 eqimss2 3621 . . . . . . . . . . . 12 (dom (1st𝐹) = ℕ → ℕ ⊆ dom (1st𝐹))
7065, 68, 693syl 18 . . . . . . . . . . 11 (𝜑 → ℕ ⊆ dom (1st𝐹))
71 dfimafn2 6156 . . . . . . . . . . 11 ((Fun (1st𝐹) ∧ ℕ ⊆ dom (1st𝐹)) → ((1st𝐹) “ ℕ) = 𝑥 ∈ ℕ {((1st𝐹)‘𝑥)})
7267, 70, 71syl2anc 691 . . . . . . . . . 10 (𝜑 → ((1st𝐹) “ ℕ) = 𝑥 ∈ ℕ {((1st𝐹)‘𝑥)})
73 fnima 5923 . . . . . . . . . . 11 ((1st𝐹) Fn ℕ → ((1st𝐹) “ ℕ) = ran (1st𝐹))
7465, 73syl 17 . . . . . . . . . 10 (𝜑 → ((1st𝐹) “ ℕ) = ran (1st𝐹))
7572, 74eqtr3d 2646 . . . . . . . . 9 (𝜑 𝑥 ∈ ℕ {((1st𝐹)‘𝑥)} = ran (1st𝐹))
76 rnco2 5559 . . . . . . . . 9 ran (1st𝐹) = (1st “ ran 𝐹)
7775, 76syl6eq 2660 . . . . . . . 8 (𝜑 𝑥 ∈ ℕ {((1st𝐹)‘𝑥)} = (1st “ ran 𝐹))
78 fo2nd 7080 . . . . . . . . . . . . . 14 2nd :V–onto→V
79 fofn 6030 . . . . . . . . . . . . . 14 (2nd :V–onto→V → 2nd Fn V)
8078, 79ax-mp 5 . . . . . . . . . . . . 13 2nd Fn V
81 fnfco 5982 . . . . . . . . . . . . 13 ((2nd Fn V ∧ 𝐹:ℕ⟶V) → (2nd𝐹) Fn ℕ)
8280, 63, 81sylancr 694 . . . . . . . . . . . 12 (𝜑 → (2nd𝐹) Fn ℕ)
83 fnfun 5902 . . . . . . . . . . . 12 ((2nd𝐹) Fn ℕ → Fun (2nd𝐹))
8482, 83syl 17 . . . . . . . . . . 11 (𝜑 → Fun (2nd𝐹))
85 fndm 5904 . . . . . . . . . . . 12 ((2nd𝐹) Fn ℕ → dom (2nd𝐹) = ℕ)
86 eqimss2 3621 . . . . . . . . . . . 12 (dom (2nd𝐹) = ℕ → ℕ ⊆ dom (2nd𝐹))
8782, 85, 863syl 18 . . . . . . . . . . 11 (𝜑 → ℕ ⊆ dom (2nd𝐹))
88 dfimafn2 6156 . . . . . . . . . . 11 ((Fun (2nd𝐹) ∧ ℕ ⊆ dom (2nd𝐹)) → ((2nd𝐹) “ ℕ) = 𝑥 ∈ ℕ {((2nd𝐹)‘𝑥)})
8984, 87, 88syl2anc 691 . . . . . . . . . 10 (𝜑 → ((2nd𝐹) “ ℕ) = 𝑥 ∈ ℕ {((2nd𝐹)‘𝑥)})
90 fnima 5923 . . . . . . . . . . 11 ((2nd𝐹) Fn ℕ → ((2nd𝐹) “ ℕ) = ran (2nd𝐹))
9182, 90syl 17 . . . . . . . . . 10 (𝜑 → ((2nd𝐹) “ ℕ) = ran (2nd𝐹))
9289, 91eqtr3d 2646 . . . . . . . . 9 (𝜑 𝑥 ∈ ℕ {((2nd𝐹)‘𝑥)} = ran (2nd𝐹))
93 rnco2 5559 . . . . . . . . 9 ran (2nd𝐹) = (2nd “ ran 𝐹)
9492, 93syl6eq 2660 . . . . . . . 8 (𝜑 𝑥 ∈ ℕ {((2nd𝐹)‘𝑥)} = (2nd “ ran 𝐹))
9577, 94uneq12d 3730 . . . . . . 7 (𝜑 → ( 𝑥 ∈ ℕ {((1st𝐹)‘𝑥)} ∪ 𝑥 ∈ ℕ {((2nd𝐹)‘𝑥)}) = ((1st “ ran 𝐹) ∪ (2nd “ ran 𝐹)))
9657, 95syl5eq 2656 . . . . . 6 (𝜑 𝑥 ∈ ℕ ({((1st𝐹)‘𝑥)} ∪ {((2nd𝐹)‘𝑥)}) = ((1st “ ran 𝐹) ∪ (2nd “ ran 𝐹)))
9756, 96uneq12d 3730 . . . . 5 (𝜑 → ( 𝑥 ∈ ℕ (((,) ∘ 𝐹)‘𝑥) ∪ 𝑥 ∈ ℕ ({((1st𝐹)‘𝑥)} ∪ {((2nd𝐹)‘𝑥)})) = ( ran ((,) ∘ 𝐹) ∪ ((1st “ ran 𝐹) ∪ (2nd “ ran 𝐹))))
9849, 97syl5eq 2656 . . . 4 (𝜑 𝑥 ∈ ℕ ((((,) ∘ 𝐹)‘𝑥) ∪ ({((1st𝐹)‘𝑥)} ∪ {((2nd𝐹)‘𝑥)})) = ( ran ((,) ∘ 𝐹) ∪ ((1st “ ran 𝐹) ∪ (2nd “ ran 𝐹))))
9937, 48, 983eqtr3d 2652 . . 3 (𝜑 ran ([,] ∘ 𝐹) = ( ran ((,) ∘ 𝐹) ∪ ((1st “ ran 𝐹) ∪ (2nd “ ran 𝐹))))
1001, 99syl5sseqr 3617 . 2 (𝜑 ran ((,) ∘ 𝐹) ⊆ ran ([,] ∘ 𝐹))
101 ovolficcss 23045 . . . . 5 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ran ([,] ∘ 𝐹) ⊆ ℝ)
1022, 101syl 17 . . . 4 (𝜑 ran ([,] ∘ 𝐹) ⊆ ℝ)
103102ssdifssd 3710 . . 3 (𝜑 → ( ran ([,] ∘ 𝐹) ∖ ran ((,) ∘ 𝐹)) ⊆ ℝ)
104 omelon 8426 . . . . . . . . . . 11 ω ∈ On
105 nnenom 12641 . . . . . . . . . . . 12 ℕ ≈ ω
106105ensymi 7892 . . . . . . . . . . 11 ω ≈ ℕ
107 isnumi 8655 . . . . . . . . . . 11 ((ω ∈ On ∧ ω ≈ ℕ) → ℕ ∈ dom card)
108104, 106, 107mp2an 704 . . . . . . . . . 10 ℕ ∈ dom card
109 fofun 6029 . . . . . . . . . . . . 13 (1st :V–onto→V → Fun 1st )
11058, 109ax-mp 5 . . . . . . . . . . . 12 Fun 1st
111 ssv 3588 . . . . . . . . . . . . 13 ran 𝐹 ⊆ V
112 fof 6028 . . . . . . . . . . . . . . 15 (1st :V–onto→V → 1st :V⟶V)
11358, 112ax-mp 5 . . . . . . . . . . . . . 14 1st :V⟶V
114113fdmi 5965 . . . . . . . . . . . . 13 dom 1st = V
115111, 114sseqtr4i 3601 . . . . . . . . . . . 12 ran 𝐹 ⊆ dom 1st
116 fores 6037 . . . . . . . . . . . 12 ((Fun 1st ∧ ran 𝐹 ⊆ dom 1st ) → (1st ↾ ran 𝐹):ran 𝐹onto→(1st “ ran 𝐹))
117110, 115, 116mp2an 704 . . . . . . . . . . 11 (1st ↾ ran 𝐹):ran 𝐹onto→(1st “ ran 𝐹)
118 ffn 5958 . . . . . . . . . . . . 13 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝐹 Fn ℕ)
1192, 118syl 17 . . . . . . . . . . . 12 (𝜑𝐹 Fn ℕ)
120 dffn4 6034 . . . . . . . . . . . 12 (𝐹 Fn ℕ ↔ 𝐹:ℕ–onto→ran 𝐹)
121119, 120sylib 207 . . . . . . . . . . 11 (𝜑𝐹:ℕ–onto→ran 𝐹)
122 foco 6038 . . . . . . . . . . 11 (((1st ↾ ran 𝐹):ran 𝐹onto→(1st “ ran 𝐹) ∧ 𝐹:ℕ–onto→ran 𝐹) → ((1st ↾ ran 𝐹) ∘ 𝐹):ℕ–onto→(1st “ ran 𝐹))
123117, 121, 122sylancr 694 . . . . . . . . . 10 (𝜑 → ((1st ↾ ran 𝐹) ∘ 𝐹):ℕ–onto→(1st “ ran 𝐹))
124 fodomnum 8763 . . . . . . . . . 10 (ℕ ∈ dom card → (((1st ↾ ran 𝐹) ∘ 𝐹):ℕ–onto→(1st “ ran 𝐹) → (1st “ ran 𝐹) ≼ ℕ))
125108, 123, 124mpsyl 66 . . . . . . . . 9 (𝜑 → (1st “ ran 𝐹) ≼ ℕ)
126 domentr 7901 . . . . . . . . 9 (((1st “ ran 𝐹) ≼ ℕ ∧ ℕ ≈ ω) → (1st “ ran 𝐹) ≼ ω)
127125, 105, 126sylancl 693 . . . . . . . 8 (𝜑 → (1st “ ran 𝐹) ≼ ω)
128 fofun 6029 . . . . . . . . . . . . 13 (2nd :V–onto→V → Fun 2nd )
12978, 128ax-mp 5 . . . . . . . . . . . 12 Fun 2nd
130 fof 6028 . . . . . . . . . . . . . . 15 (2nd :V–onto→V → 2nd :V⟶V)
13178, 130ax-mp 5 . . . . . . . . . . . . . 14 2nd :V⟶V
132131fdmi 5965 . . . . . . . . . . . . 13 dom 2nd = V
133111, 132sseqtr4i 3601 . . . . . . . . . . . 12 ran 𝐹 ⊆ dom 2nd
134 fores 6037 . . . . . . . . . . . 12 ((Fun 2nd ∧ ran 𝐹 ⊆ dom 2nd ) → (2nd ↾ ran 𝐹):ran 𝐹onto→(2nd “ ran 𝐹))
135129, 133, 134mp2an 704 . . . . . . . . . . 11 (2nd ↾ ran 𝐹):ran 𝐹onto→(2nd “ ran 𝐹)
136 foco 6038 . . . . . . . . . . 11 (((2nd ↾ ran 𝐹):ran 𝐹onto→(2nd “ ran 𝐹) ∧ 𝐹:ℕ–onto→ran 𝐹) → ((2nd ↾ ran 𝐹) ∘ 𝐹):ℕ–onto→(2nd “ ran 𝐹))
137135, 121, 136sylancr 694 . . . . . . . . . 10 (𝜑 → ((2nd ↾ ran 𝐹) ∘ 𝐹):ℕ–onto→(2nd “ ran 𝐹))
138 fodomnum 8763 . . . . . . . . . 10 (ℕ ∈ dom card → (((2nd ↾ ran 𝐹) ∘ 𝐹):ℕ–onto→(2nd “ ran 𝐹) → (2nd “ ran 𝐹) ≼ ℕ))
139108, 137, 138mpsyl 66 . . . . . . . . 9 (𝜑 → (2nd “ ran 𝐹) ≼ ℕ)
140 domentr 7901 . . . . . . . . 9 (((2nd “ ran 𝐹) ≼ ℕ ∧ ℕ ≈ ω) → (2nd “ ran 𝐹) ≼ ω)
141139, 105, 140sylancl 693 . . . . . . . 8 (𝜑 → (2nd “ ran 𝐹) ≼ ω)
142 unctb 8910 . . . . . . . 8 (((1st “ ran 𝐹) ≼ ω ∧ (2nd “ ran 𝐹) ≼ ω) → ((1st “ ran 𝐹) ∪ (2nd “ ran 𝐹)) ≼ ω)
143127, 141, 142syl2anc 691 . . . . . . 7 (𝜑 → ((1st “ ran 𝐹) ∪ (2nd “ ran 𝐹)) ≼ ω)
144 reldom 7847 . . . . . . . 8 Rel ≼
145144brrelexi 5082 . . . . . . 7 (((1st “ ran 𝐹) ∪ (2nd “ ran 𝐹)) ≼ ω → ((1st “ ran 𝐹) ∪ (2nd “ ran 𝐹)) ∈ V)
146143, 145syl 17 . . . . . 6 (𝜑 → ((1st “ ran 𝐹) ∪ (2nd “ ran 𝐹)) ∈ V)
147 ssid 3587 . . . . . . . 8 ran ([,] ∘ 𝐹) ⊆ ran ([,] ∘ 𝐹)
148147, 99syl5sseq 3616 . . . . . . 7 (𝜑 ran ([,] ∘ 𝐹) ⊆ ( ran ((,) ∘ 𝐹) ∪ ((1st “ ran 𝐹) ∪ (2nd “ ran 𝐹))))
149 ssundif 4004 . . . . . . 7 ( ran ([,] ∘ 𝐹) ⊆ ( ran ((,) ∘ 𝐹) ∪ ((1st “ ran 𝐹) ∪ (2nd “ ran 𝐹))) ↔ ( ran ([,] ∘ 𝐹) ∖ ran ((,) ∘ 𝐹)) ⊆ ((1st “ ran 𝐹) ∪ (2nd “ ran 𝐹)))
150148, 149sylib 207 . . . . . 6 (𝜑 → ( ran ([,] ∘ 𝐹) ∖ ran ((,) ∘ 𝐹)) ⊆ ((1st “ ran 𝐹) ∪ (2nd “ ran 𝐹)))
151 ssdomg 7887 . . . . . 6 (((1st “ ran 𝐹) ∪ (2nd “ ran 𝐹)) ∈ V → (( ran ([,] ∘ 𝐹) ∖ ran ((,) ∘ 𝐹)) ⊆ ((1st “ ran 𝐹) ∪ (2nd “ ran 𝐹)) → ( ran ([,] ∘ 𝐹) ∖ ran ((,) ∘ 𝐹)) ≼ ((1st “ ran 𝐹) ∪ (2nd “ ran 𝐹))))
152146, 150, 151sylc 63 . . . . 5 (𝜑 → ( ran ([,] ∘ 𝐹) ∖ ran ((,) ∘ 𝐹)) ≼ ((1st “ ran 𝐹) ∪ (2nd “ ran 𝐹)))
153 domtr 7895 . . . . 5 ((( ran ([,] ∘ 𝐹) ∖ ran ((,) ∘ 𝐹)) ≼ ((1st “ ran 𝐹) ∪ (2nd “ ran 𝐹)) ∧ ((1st “ ran 𝐹) ∪ (2nd “ ran 𝐹)) ≼ ω) → ( ran ([,] ∘ 𝐹) ∖ ran ((,) ∘ 𝐹)) ≼ ω)
154152, 143, 153syl2anc 691 . . . 4 (𝜑 → ( ran ([,] ∘ 𝐹) ∖ ran ((,) ∘ 𝐹)) ≼ ω)
155 domentr 7901 . . . 4 ((( ran ([,] ∘ 𝐹) ∖ ran ((,) ∘ 𝐹)) ≼ ω ∧ ω ≈ ℕ) → ( ran ([,] ∘ 𝐹) ∖ ran ((,) ∘ 𝐹)) ≼ ℕ)
156154, 106, 155sylancl 693 . . 3 (𝜑 → ( ran ([,] ∘ 𝐹) ∖ ran ((,) ∘ 𝐹)) ≼ ℕ)
157 ovolctb2 23067 . . 3 ((( ran ([,] ∘ 𝐹) ∖ ran ((,) ∘ 𝐹)) ⊆ ℝ ∧ ( ran ([,] ∘ 𝐹) ∖ ran ((,) ∘ 𝐹)) ≼ ℕ) → (vol*‘( ran ([,] ∘ 𝐹) ∖ ran ((,) ∘ 𝐹))) = 0)
158103, 156, 157syl2anc 691 . 2 (𝜑 → (vol*‘( ran ([,] ∘ 𝐹) ∖ ran ((,) ∘ 𝐹))) = 0)
159100, 158jca 553 1 (𝜑 → ( ran ((,) ∘ 𝐹) ⊆ ran ([,] ∘ 𝐹) ∧ (vol*‘( ran ([,] ∘ 𝐹) ∖ ran ((,) ∘ 𝐹))) = 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  Vcvv 3173  cdif 3537  cun 3538  cin 3539  wss 3540  𝒫 cpw 4108  {csn 4125  {cpr 4127  cop 4131   cuni 4372   ciun 4455   class class class wbr 4583   × cxp 5036  dom cdm 5038  ran crn 5039  cres 5040  cima 5041  ccom 5042  Oncon0 5640  Fun wfun 5798   Fn wfn 5799  wf 5800  ontowfo 5802  cfv 5804  (class class class)co 6549  ωcom 6957  1st c1st 7057  2nd c2nd 7058  cen 7838  cdom 7839  cardccrd 8644  cr 9814  0cc0 9815  *cxr 9952  cle 9954  cn 10897  (,)cioo 12046  [,]cicc 12049  vol*covol 23038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-acn 8651  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-xadd 11823  df-ioo 12050  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265  df-xmet 19560  df-met 19561  df-ovol 23040
This theorem is referenced by:  uniioombllem3  23159  uniioombllem4  23160  uniioombllem5  23161  uniiccmbl  23164
  Copyright terms: Public domain W3C validator