Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cofull Structured version   Visualization version   GIF version

Theorem cofull 16417
 Description: The composition of two full functors is full. Proposition 3.30(d) in [Adamek] p. 35. (Contributed by Mario Carneiro, 28-Jan-2017.)
Hypotheses
Ref Expression
cofull.f (𝜑𝐹 ∈ (𝐶 Full 𝐷))
cofull.g (𝜑𝐺 ∈ (𝐷 Full 𝐸))
Assertion
Ref Expression
cofull (𝜑 → (𝐺func 𝐹) ∈ (𝐶 Full 𝐸))

Proof of Theorem cofull
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relfunc 16345 . . 3 Rel (𝐶 Func 𝐸)
2 fullfunc 16389 . . . . 5 (𝐶 Full 𝐷) ⊆ (𝐶 Func 𝐷)
3 cofull.f . . . . 5 (𝜑𝐹 ∈ (𝐶 Full 𝐷))
42, 3sseldi 3566 . . . 4 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
5 fullfunc 16389 . . . . 5 (𝐷 Full 𝐸) ⊆ (𝐷 Func 𝐸)
6 cofull.g . . . . 5 (𝜑𝐺 ∈ (𝐷 Full 𝐸))
75, 6sseldi 3566 . . . 4 (𝜑𝐺 ∈ (𝐷 Func 𝐸))
84, 7cofucl 16371 . . 3 (𝜑 → (𝐺func 𝐹) ∈ (𝐶 Func 𝐸))
9 1st2nd 7105 . . 3 ((Rel (𝐶 Func 𝐸) ∧ (𝐺func 𝐹) ∈ (𝐶 Func 𝐸)) → (𝐺func 𝐹) = ⟨(1st ‘(𝐺func 𝐹)), (2nd ‘(𝐺func 𝐹))⟩)
101, 8, 9sylancr 694 . 2 (𝜑 → (𝐺func 𝐹) = ⟨(1st ‘(𝐺func 𝐹)), (2nd ‘(𝐺func 𝐹))⟩)
11 1st2ndbr 7108 . . . . 5 ((Rel (𝐶 Func 𝐸) ∧ (𝐺func 𝐹) ∈ (𝐶 Func 𝐸)) → (1st ‘(𝐺func 𝐹))(𝐶 Func 𝐸)(2nd ‘(𝐺func 𝐹)))
121, 8, 11sylancr 694 . . . 4 (𝜑 → (1st ‘(𝐺func 𝐹))(𝐶 Func 𝐸)(2nd ‘(𝐺func 𝐹)))
13 eqid 2610 . . . . . . . 8 (Base‘𝐷) = (Base‘𝐷)
14 eqid 2610 . . . . . . . 8 (Hom ‘𝐸) = (Hom ‘𝐸)
15 eqid 2610 . . . . . . . 8 (Hom ‘𝐷) = (Hom ‘𝐷)
16 relfull 16391 . . . . . . . . 9 Rel (𝐷 Full 𝐸)
176adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝐺 ∈ (𝐷 Full 𝐸))
18 1st2ndbr 7108 . . . . . . . . 9 ((Rel (𝐷 Full 𝐸) ∧ 𝐺 ∈ (𝐷 Full 𝐸)) → (1st𝐺)(𝐷 Full 𝐸)(2nd𝐺))
1916, 17, 18sylancr 694 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (1st𝐺)(𝐷 Full 𝐸)(2nd𝐺))
20 eqid 2610 . . . . . . . . . 10 (Base‘𝐶) = (Base‘𝐶)
21 relfunc 16345 . . . . . . . . . . 11 Rel (𝐶 Func 𝐷)
224adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝐹 ∈ (𝐶 Func 𝐷))
23 1st2ndbr 7108 . . . . . . . . . . 11 ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
2421, 22, 23sylancr 694 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
2520, 13, 24funcf1 16349 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (1st𝐹):(Base‘𝐶)⟶(Base‘𝐷))
26 simprl 790 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑥 ∈ (Base‘𝐶))
2725, 26ffvelrnd 6268 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((1st𝐹)‘𝑥) ∈ (Base‘𝐷))
28 simprr 792 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑦 ∈ (Base‘𝐶))
2925, 28ffvelrnd 6268 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((1st𝐹)‘𝑦) ∈ (Base‘𝐷))
3013, 14, 15, 19, 27, 29fullfo 16395 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)):(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦))–onto→(((1st𝐺)‘((1st𝐹)‘𝑥))(Hom ‘𝐸)((1st𝐺)‘((1st𝐹)‘𝑦))))
31 eqid 2610 . . . . . . . 8 (Hom ‘𝐶) = (Hom ‘𝐶)
32 relfull 16391 . . . . . . . . 9 Rel (𝐶 Full 𝐷)
333adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝐹 ∈ (𝐶 Full 𝐷))
34 1st2ndbr 7108 . . . . . . . . 9 ((Rel (𝐶 Full 𝐷) ∧ 𝐹 ∈ (𝐶 Full 𝐷)) → (1st𝐹)(𝐶 Full 𝐷)(2nd𝐹))
3532, 33, 34sylancr 694 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (1st𝐹)(𝐶 Full 𝐷)(2nd𝐹))
3620, 15, 31, 35, 26, 28fullfo 16395 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd𝐹)𝑦):(𝑥(Hom ‘𝐶)𝑦)–onto→(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦)))
37 foco 6038 . . . . . . 7 (((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)):(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦))–onto→(((1st𝐺)‘((1st𝐹)‘𝑥))(Hom ‘𝐸)((1st𝐺)‘((1st𝐹)‘𝑦))) ∧ (𝑥(2nd𝐹)𝑦):(𝑥(Hom ‘𝐶)𝑦)–onto→(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦))) → ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)):(𝑥(Hom ‘𝐶)𝑦)–onto→(((1st𝐺)‘((1st𝐹)‘𝑥))(Hom ‘𝐸)((1st𝐺)‘((1st𝐹)‘𝑦))))
3830, 36, 37syl2anc 691 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)):(𝑥(Hom ‘𝐶)𝑦)–onto→(((1st𝐺)‘((1st𝐹)‘𝑥))(Hom ‘𝐸)((1st𝐺)‘((1st𝐹)‘𝑦))))
397adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝐺 ∈ (𝐷 Func 𝐸))
4020, 22, 39, 26, 28cofu2nd 16368 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd ‘(𝐺func 𝐹))𝑦) = ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)))
41 eqidd 2611 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(Hom ‘𝐶)𝑦) = (𝑥(Hom ‘𝐶)𝑦))
4220, 22, 39, 26cofu1 16367 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((1st ‘(𝐺func 𝐹))‘𝑥) = ((1st𝐺)‘((1st𝐹)‘𝑥)))
4320, 22, 39, 28cofu1 16367 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((1st ‘(𝐺func 𝐹))‘𝑦) = ((1st𝐺)‘((1st𝐹)‘𝑦)))
4442, 43oveq12d 6567 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (((1st ‘(𝐺func 𝐹))‘𝑥)(Hom ‘𝐸)((1st ‘(𝐺func 𝐹))‘𝑦)) = (((1st𝐺)‘((1st𝐹)‘𝑥))(Hom ‘𝐸)((1st𝐺)‘((1st𝐹)‘𝑦))))
4540, 41, 44foeq123d 6045 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((𝑥(2nd ‘(𝐺func 𝐹))𝑦):(𝑥(Hom ‘𝐶)𝑦)–onto→(((1st ‘(𝐺func 𝐹))‘𝑥)(Hom ‘𝐸)((1st ‘(𝐺func 𝐹))‘𝑦)) ↔ ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)):(𝑥(Hom ‘𝐶)𝑦)–onto→(((1st𝐺)‘((1st𝐹)‘𝑥))(Hom ‘𝐸)((1st𝐺)‘((1st𝐹)‘𝑦)))))
4638, 45mpbird 246 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd ‘(𝐺func 𝐹))𝑦):(𝑥(Hom ‘𝐶)𝑦)–onto→(((1st ‘(𝐺func 𝐹))‘𝑥)(Hom ‘𝐸)((1st ‘(𝐺func 𝐹))‘𝑦)))
4746ralrimivva 2954 . . . 4 (𝜑 → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)(𝑥(2nd ‘(𝐺func 𝐹))𝑦):(𝑥(Hom ‘𝐶)𝑦)–onto→(((1st ‘(𝐺func 𝐹))‘𝑥)(Hom ‘𝐸)((1st ‘(𝐺func 𝐹))‘𝑦)))
4820, 14, 31isfull2 16394 . . . 4 ((1st ‘(𝐺func 𝐹))(𝐶 Full 𝐸)(2nd ‘(𝐺func 𝐹)) ↔ ((1st ‘(𝐺func 𝐹))(𝐶 Func 𝐸)(2nd ‘(𝐺func 𝐹)) ∧ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)(𝑥(2nd ‘(𝐺func 𝐹))𝑦):(𝑥(Hom ‘𝐶)𝑦)–onto→(((1st ‘(𝐺func 𝐹))‘𝑥)(Hom ‘𝐸)((1st ‘(𝐺func 𝐹))‘𝑦))))
4912, 47, 48sylanbrc 695 . . 3 (𝜑 → (1st ‘(𝐺func 𝐹))(𝐶 Full 𝐸)(2nd ‘(𝐺func 𝐹)))
50 df-br 4584 . . 3 ((1st ‘(𝐺func 𝐹))(𝐶 Full 𝐸)(2nd ‘(𝐺func 𝐹)) ↔ ⟨(1st ‘(𝐺func 𝐹)), (2nd ‘(𝐺func 𝐹))⟩ ∈ (𝐶 Full 𝐸))
5149, 50sylib 207 . 2 (𝜑 → ⟨(1st ‘(𝐺func 𝐹)), (2nd ‘(𝐺func 𝐹))⟩ ∈ (𝐶 Full 𝐸))
5210, 51eqeltrd 2688 1 (𝜑 → (𝐺func 𝐹) ∈ (𝐶 Full 𝐸))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977  ∀wral 2896  ⟨cop 4131   class class class wbr 4583   ∘ ccom 5042  Rel wrel 5043  –onto→wfo 5802  ‘cfv 5804  (class class class)co 6549  1st c1st 7057  2nd c2nd 7058  Basecbs 15695  Hom chom 15779   Func cfunc 16337   ∘func ccofu 16339   Full cful 16385 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-map 7746  df-ixp 7795  df-cat 16152  df-cid 16153  df-func 16341  df-cofu 16343  df-full 16387 This theorem is referenced by:  coffth  16419
 Copyright terms: Public domain W3C validator