MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  avril1 Structured version   Visualization version   GIF version

Theorem avril1 26711
Description: Poisson d'Avril's Theorem. This theorem is noted for its Selbstdokumentieren property, which means, literally, "self-documenting" and recalls the principle of quidquid german dictum sit, altum viditur, often used in set theory. Starting with the seemingly simple yet profound fact that any object 𝑥 equals itself (proved by Tarski in 1965; see Lemma 6 of [Tarski] p. 68), we demonstrate that the power set of the real numbers, as a relation on the value of the imaginary unit, does not conjoin with an empty relation on the product of the additive and multiplicative identity elements, leading to this startling conclusion that has left even seasoned professional mathematicians scratching their heads. (Contributed by Prof. Loof Lirpa, 1-Apr-2005.) (Proof modification is discouraged.) (New usage is discouraged.)

A reply to skeptics can be found at mmnotes.txt, under the 1-Apr-2006 entry.

Assertion
Ref Expression
avril1 ¬ (𝐴𝒫 ℝ(i‘1) ∧ 𝐹∅(0 · 1))

Proof of Theorem avril1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 equid 1926 . . . . . . . 8 𝑥 = 𝑥
2 dfnul2 3876 . . . . . . . . . 10 ∅ = {𝑥 ∣ ¬ 𝑥 = 𝑥}
32abeq2i 2722 . . . . . . . . 9 (𝑥 ∈ ∅ ↔ ¬ 𝑥 = 𝑥)
43con2bii 346 . . . . . . . 8 (𝑥 = 𝑥 ↔ ¬ 𝑥 ∈ ∅)
51, 4mpbi 219 . . . . . . 7 ¬ 𝑥 ∈ ∅
6 eleq1 2676 . . . . . . 7 (𝑥 = ⟨𝐹, 0⟩ → (𝑥 ∈ ∅ ↔ ⟨𝐹, 0⟩ ∈ ∅))
75, 6mtbii 315 . . . . . 6 (𝑥 = ⟨𝐹, 0⟩ → ¬ ⟨𝐹, 0⟩ ∈ ∅)
87vtocleg 3252 . . . . 5 (⟨𝐹, 0⟩ ∈ V → ¬ ⟨𝐹, 0⟩ ∈ ∅)
9 elex 3185 . . . . . 6 (⟨𝐹, 0⟩ ∈ ∅ → ⟨𝐹, 0⟩ ∈ V)
109con3i 149 . . . . 5 (¬ ⟨𝐹, 0⟩ ∈ V → ¬ ⟨𝐹, 0⟩ ∈ ∅)
118, 10pm2.61i 175 . . . 4 ¬ ⟨𝐹, 0⟩ ∈ ∅
12 df-br 4584 . . . . 5 (𝐹∅(0 · 1) ↔ ⟨𝐹, (0 · 1)⟩ ∈ ∅)
13 0cn 9911 . . . . . . . 8 0 ∈ ℂ
1413mulid1i 9921 . . . . . . 7 (0 · 1) = 0
1514opeq2i 4344 . . . . . 6 𝐹, (0 · 1)⟩ = ⟨𝐹, 0⟩
1615eleq1i 2679 . . . . 5 (⟨𝐹, (0 · 1)⟩ ∈ ∅ ↔ ⟨𝐹, 0⟩ ∈ ∅)
1712, 16bitri 263 . . . 4 (𝐹∅(0 · 1) ↔ ⟨𝐹, 0⟩ ∈ ∅)
1811, 17mtbir 312 . . 3 ¬ 𝐹∅(0 · 1)
1918intnan 951 . 2 ¬ (𝐴𝒫 (R × {0R})(℩𝑦1⟨0R, 1R𝑦) ∧ 𝐹∅(0 · 1))
20 df-i 9824 . . . . . . . 8 i = ⟨0R, 1R
2120fveq1i 6104 . . . . . . 7 (i‘1) = (⟨0R, 1R⟩‘1)
22 df-fv 5812 . . . . . . 7 (⟨0R, 1R⟩‘1) = (℩𝑦1⟨0R, 1R𝑦)
2321, 22eqtri 2632 . . . . . 6 (i‘1) = (℩𝑦1⟨0R, 1R𝑦)
2423breq2i 4591 . . . . 5 (𝐴𝒫 ℝ(i‘1) ↔ 𝐴𝒫 ℝ(℩𝑦1⟨0R, 1R𝑦))
25 df-r 9825 . . . . . . 7 ℝ = (R × {0R})
26 sseq2 3590 . . . . . . . . 9 (ℝ = (R × {0R}) → (𝑧 ⊆ ℝ ↔ 𝑧 ⊆ (R × {0R})))
2726abbidv 2728 . . . . . . . 8 (ℝ = (R × {0R}) → {𝑧𝑧 ⊆ ℝ} = {𝑧𝑧 ⊆ (R × {0R})})
28 df-pw 4110 . . . . . . . 8 𝒫 ℝ = {𝑧𝑧 ⊆ ℝ}
29 df-pw 4110 . . . . . . . 8 𝒫 (R × {0R}) = {𝑧𝑧 ⊆ (R × {0R})}
3027, 28, 293eqtr4g 2669 . . . . . . 7 (ℝ = (R × {0R}) → 𝒫 ℝ = 𝒫 (R × {0R}))
3125, 30ax-mp 5 . . . . . 6 𝒫 ℝ = 𝒫 (R × {0R})
3231breqi 4589 . . . . 5 (𝐴𝒫 ℝ(℩𝑦1⟨0R, 1R𝑦) ↔ 𝐴𝒫 (R × {0R})(℩𝑦1⟨0R, 1R𝑦))
3324, 32bitri 263 . . . 4 (𝐴𝒫 ℝ(i‘1) ↔ 𝐴𝒫 (R × {0R})(℩𝑦1⟨0R, 1R𝑦))
3433anbi1i 727 . . 3 ((𝐴𝒫 ℝ(i‘1) ∧ 𝐹∅(0 · 1)) ↔ (𝐴𝒫 (R × {0R})(℩𝑦1⟨0R, 1R𝑦) ∧ 𝐹∅(0 · 1)))
3534notbii 309 . 2 (¬ (𝐴𝒫 ℝ(i‘1) ∧ 𝐹∅(0 · 1)) ↔ ¬ (𝐴𝒫 (R × {0R})(℩𝑦1⟨0R, 1R𝑦) ∧ 𝐹∅(0 · 1)))
3619, 35mpbir 220 1 ¬ (𝐴𝒫 ℝ(i‘1) ∧ 𝐹∅(0 · 1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 383   = wceq 1475  wcel 1977  {cab 2596  Vcvv 3173  wss 3540  c0 3874  𝒫 cpw 4108  {csn 4125  cop 4131   class class class wbr 4583   × cxp 5036  cio 5766  cfv 5804  (class class class)co 6549  Rcnr 9566  0Rc0r 9567  1Rc1r 9568  cr 9814  0cc0 9815  1c1 9816  ici 9817   · cmul 9820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-mulcl 9877  ax-mulcom 9879  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1rid 9885  ax-cnre 9888
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-iota 5768  df-fv 5812  df-ov 6552  df-i 9824  df-r 9825
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator