Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nodenselem4 Structured version   Visualization version   GIF version

Theorem nodenselem4 31083
Description: Lemma for nodense 31088. Show that a particular abstraction is an ordinal. (Contributed by Scott Fenton, 16-Jun-2011.)
Assertion
Ref Expression
nodenselem4 (((𝐴 No 𝐵 No ) ∧ 𝐴 <s 𝐵) → {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ∈ On)
Distinct variable groups:   𝐴,𝑎   𝐵,𝑎

Proof of Theorem nodenselem4
StepHypRef Expression
1 ssrab2 3650 . 2 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ⊆ On
2 sltirr 31069 . . . . . . 7 (𝐴 No → ¬ 𝐴 <s 𝐴)
3 breq2 4587 . . . . . . . . 9 (𝐴 = 𝐵 → (𝐴 <s 𝐴𝐴 <s 𝐵))
43biimprcd 239 . . . . . . . 8 (𝐴 <s 𝐵 → (𝐴 = 𝐵𝐴 <s 𝐴))
54con3d 147 . . . . . . 7 (𝐴 <s 𝐵 → (¬ 𝐴 <s 𝐴 → ¬ 𝐴 = 𝐵))
62, 5syl5com 31 . . . . . 6 (𝐴 No → (𝐴 <s 𝐵 → ¬ 𝐴 = 𝐵))
76adantr 480 . . . . 5 ((𝐴 No 𝐵 No ) → (𝐴 <s 𝐵 → ¬ 𝐴 = 𝐵))
8 nofnbday 31049 . . . . . . . 8 (𝐴 No 𝐴 Fn ( bday 𝐴))
9 nofnbday 31049 . . . . . . . 8 (𝐵 No 𝐵 Fn ( bday 𝐵))
10 eqfnfv2 6220 . . . . . . . 8 ((𝐴 Fn ( bday 𝐴) ∧ 𝐵 Fn ( bday 𝐵)) → (𝐴 = 𝐵 ↔ (( bday 𝐴) = ( bday 𝐵) ∧ ∀𝑎 ∈ ( bday 𝐴)(𝐴𝑎) = (𝐵𝑎))))
118, 9, 10syl2an 493 . . . . . . 7 ((𝐴 No 𝐵 No ) → (𝐴 = 𝐵 ↔ (( bday 𝐴) = ( bday 𝐵) ∧ ∀𝑎 ∈ ( bday 𝐴)(𝐴𝑎) = (𝐵𝑎))))
1211notbid 307 . . . . . 6 ((𝐴 No 𝐵 No ) → (¬ 𝐴 = 𝐵 ↔ ¬ (( bday 𝐴) = ( bday 𝐵) ∧ ∀𝑎 ∈ ( bday 𝐴)(𝐴𝑎) = (𝐵𝑎))))
13 ianor 508 . . . . . . 7 (¬ (( bday 𝐴) = ( bday 𝐵) ∧ ∀𝑎 ∈ ( bday 𝐴)(𝐴𝑎) = (𝐵𝑎)) ↔ (¬ ( bday 𝐴) = ( bday 𝐵) ∨ ¬ ∀𝑎 ∈ ( bday 𝐴)(𝐴𝑎) = (𝐵𝑎)))
14 bdayelon 31079 . . . . . . . . . . . 12 ( bday 𝐴) ∈ On
1514onordi 5749 . . . . . . . . . . 11 Ord ( bday 𝐴)
16 bdayelon 31079 . . . . . . . . . . . 12 ( bday 𝐵) ∈ On
1716onordi 5749 . . . . . . . . . . 11 Ord ( bday 𝐵)
18 ordtri3 5676 . . . . . . . . . . 11 ((Ord ( bday 𝐴) ∧ Ord ( bday 𝐵)) → (( bday 𝐴) = ( bday 𝐵) ↔ ¬ (( bday 𝐴) ∈ ( bday 𝐵) ∨ ( bday 𝐵) ∈ ( bday 𝐴))))
1915, 17, 18mp2an 704 . . . . . . . . . 10 (( bday 𝐴) = ( bday 𝐵) ↔ ¬ (( bday 𝐴) ∈ ( bday 𝐵) ∨ ( bday 𝐵) ∈ ( bday 𝐴)))
2019con2bii 346 . . . . . . . . 9 ((( bday 𝐴) ∈ ( bday 𝐵) ∨ ( bday 𝐵) ∈ ( bday 𝐴)) ↔ ¬ ( bday 𝐴) = ( bday 𝐵))
21 nodenselem3 31082 . . . . . . . . . 10 ((𝐴 No 𝐵 No ) → (( bday 𝐴) ∈ ( bday 𝐵) → ∃𝑎 ∈ On (𝐴𝑎) ≠ (𝐵𝑎)))
22 nodenselem3 31082 . . . . . . . . . . . 12 ((𝐵 No 𝐴 No ) → (( bday 𝐵) ∈ ( bday 𝐴) → ∃𝑎 ∈ On (𝐵𝑎) ≠ (𝐴𝑎)))
23 necom 2835 . . . . . . . . . . . . 13 ((𝐵𝑎) ≠ (𝐴𝑎) ↔ (𝐴𝑎) ≠ (𝐵𝑎))
2423rexbii 3023 . . . . . . . . . . . 12 (∃𝑎 ∈ On (𝐵𝑎) ≠ (𝐴𝑎) ↔ ∃𝑎 ∈ On (𝐴𝑎) ≠ (𝐵𝑎))
2522, 24syl6ib 240 . . . . . . . . . . 11 ((𝐵 No 𝐴 No ) → (( bday 𝐵) ∈ ( bday 𝐴) → ∃𝑎 ∈ On (𝐴𝑎) ≠ (𝐵𝑎)))
2625ancoms 468 . . . . . . . . . 10 ((𝐴 No 𝐵 No ) → (( bday 𝐵) ∈ ( bday 𝐴) → ∃𝑎 ∈ On (𝐴𝑎) ≠ (𝐵𝑎)))
2721, 26jaod 394 . . . . . . . . 9 ((𝐴 No 𝐵 No ) → ((( bday 𝐴) ∈ ( bday 𝐵) ∨ ( bday 𝐵) ∈ ( bday 𝐴)) → ∃𝑎 ∈ On (𝐴𝑎) ≠ (𝐵𝑎)))
2820, 27syl5bir 232 . . . . . . . 8 ((𝐴 No 𝐵 No ) → (¬ ( bday 𝐴) = ( bday 𝐵) → ∃𝑎 ∈ On (𝐴𝑎) ≠ (𝐵𝑎)))
29 rexnal 2978 . . . . . . . . . 10 (∃𝑎 ∈ ( bday 𝐴) ¬ (𝐴𝑎) = (𝐵𝑎) ↔ ¬ ∀𝑎 ∈ ( bday 𝐴)(𝐴𝑎) = (𝐵𝑎))
3014onssi 6929 . . . . . . . . . . . 12 ( bday 𝐴) ⊆ On
31 ssrexv 3630 . . . . . . . . . . . 12 (( bday 𝐴) ⊆ On → (∃𝑎 ∈ ( bday 𝐴) ¬ (𝐴𝑎) = (𝐵𝑎) → ∃𝑎 ∈ On ¬ (𝐴𝑎) = (𝐵𝑎)))
3230, 31ax-mp 5 . . . . . . . . . . 11 (∃𝑎 ∈ ( bday 𝐴) ¬ (𝐴𝑎) = (𝐵𝑎) → ∃𝑎 ∈ On ¬ (𝐴𝑎) = (𝐵𝑎))
33 df-ne 2782 . . . . . . . . . . . 12 ((𝐴𝑎) ≠ (𝐵𝑎) ↔ ¬ (𝐴𝑎) = (𝐵𝑎))
3433rexbii 3023 . . . . . . . . . . 11 (∃𝑎 ∈ On (𝐴𝑎) ≠ (𝐵𝑎) ↔ ∃𝑎 ∈ On ¬ (𝐴𝑎) = (𝐵𝑎))
3532, 34sylibr 223 . . . . . . . . . 10 (∃𝑎 ∈ ( bday 𝐴) ¬ (𝐴𝑎) = (𝐵𝑎) → ∃𝑎 ∈ On (𝐴𝑎) ≠ (𝐵𝑎))
3629, 35sylbir 224 . . . . . . . . 9 (¬ ∀𝑎 ∈ ( bday 𝐴)(𝐴𝑎) = (𝐵𝑎) → ∃𝑎 ∈ On (𝐴𝑎) ≠ (𝐵𝑎))
3736a1i 11 . . . . . . . 8 ((𝐴 No 𝐵 No ) → (¬ ∀𝑎 ∈ ( bday 𝐴)(𝐴𝑎) = (𝐵𝑎) → ∃𝑎 ∈ On (𝐴𝑎) ≠ (𝐵𝑎)))
3828, 37jaod 394 . . . . . . 7 ((𝐴 No 𝐵 No ) → ((¬ ( bday 𝐴) = ( bday 𝐵) ∨ ¬ ∀𝑎 ∈ ( bday 𝐴)(𝐴𝑎) = (𝐵𝑎)) → ∃𝑎 ∈ On (𝐴𝑎) ≠ (𝐵𝑎)))
3913, 38syl5bi 231 . . . . . 6 ((𝐴 No 𝐵 No ) → (¬ (( bday 𝐴) = ( bday 𝐵) ∧ ∀𝑎 ∈ ( bday 𝐴)(𝐴𝑎) = (𝐵𝑎)) → ∃𝑎 ∈ On (𝐴𝑎) ≠ (𝐵𝑎)))
4012, 39sylbid 229 . . . . 5 ((𝐴 No 𝐵 No ) → (¬ 𝐴 = 𝐵 → ∃𝑎 ∈ On (𝐴𝑎) ≠ (𝐵𝑎)))
417, 40syld 46 . . . 4 ((𝐴 No 𝐵 No ) → (𝐴 <s 𝐵 → ∃𝑎 ∈ On (𝐴𝑎) ≠ (𝐵𝑎)))
4241imp 444 . . 3 (((𝐴 No 𝐵 No ) ∧ 𝐴 <s 𝐵) → ∃𝑎 ∈ On (𝐴𝑎) ≠ (𝐵𝑎))
43 rabn0 3912 . . 3 ({𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ≠ ∅ ↔ ∃𝑎 ∈ On (𝐴𝑎) ≠ (𝐵𝑎))
4442, 43sylibr 223 . 2 (((𝐴 No 𝐵 No ) ∧ 𝐴 <s 𝐵) → {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ≠ ∅)
45 oninton 6892 . 2 (({𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ⊆ On ∧ {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ≠ ∅) → {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ∈ On)
461, 44, 45sylancr 694 1 (((𝐴 No 𝐵 No ) ∧ 𝐴 <s 𝐵) → {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ∈ On)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383   = wceq 1475  wcel 1977  wne 2780  wral 2896  wrex 2897  {crab 2900  wss 3540  c0 3874   cint 4410   class class class wbr 4583  Ord word 5639  Oncon0 5640   Fn wfn 5799  cfv 5804   No csur 31037   <s cslt 31038   bday cbday 31039
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-ord 5643  df-on 5644  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-1o 7447  df-2o 7448  df-no 31040  df-slt 31041  df-bday 31042
This theorem is referenced by:  nodenselem5  31084  nodenselem6  31085  nodenselem7  31086  nodense  31088
  Copyright terms: Public domain W3C validator