Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nodenselem5 Structured version   Visualization version   GIF version

Theorem nodenselem5 31084
Description: Lemma for nodense 31088. If the birthdays of two distinct surreals are equal, then the ordinal from nodenselem4 31083 is an element of that birthday. (Contributed by Scott Fenton, 16-Jun-2011.)
Assertion
Ref Expression
nodenselem5 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ∈ ( bday 𝐴))
Distinct variable groups:   𝐴,𝑎   𝐵,𝑎

Proof of Theorem nodenselem5
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sltirr 31069 . . . . . . . . 9 (𝐴 No → ¬ 𝐴 <s 𝐴)
2 breq2 4587 . . . . . . . . . 10 (𝐴 = 𝐵 → (𝐴 <s 𝐴𝐴 <s 𝐵))
32notbid 307 . . . . . . . . 9 (𝐴 = 𝐵 → (¬ 𝐴 <s 𝐴 ↔ ¬ 𝐴 <s 𝐵))
41, 3syl5ibcom 234 . . . . . . . 8 (𝐴 No → (𝐴 = 𝐵 → ¬ 𝐴 <s 𝐵))
54con2d 128 . . . . . . 7 (𝐴 No → (𝐴 <s 𝐵 → ¬ 𝐴 = 𝐵))
65imp 444 . . . . . 6 ((𝐴 No 𝐴 <s 𝐵) → ¬ 𝐴 = 𝐵)
76ad2ant2rl 781 . . . . 5 (((𝐴 No 𝐵 No ) ∧ (dom 𝐴 = dom 𝐵𝐴 <s 𝐵)) → ¬ 𝐴 = 𝐵)
8 nofun 31046 . . . . . . . . 9 (𝐴 No → Fun 𝐴)
9 nofun 31046 . . . . . . . . 9 (𝐵 No → Fun 𝐵)
10 eqfunfv 6224 . . . . . . . . 9 ((Fun 𝐴 ∧ Fun 𝐵) → (𝐴 = 𝐵 ↔ (dom 𝐴 = dom 𝐵 ∧ ∀𝑥 ∈ dom 𝐴(𝐴𝑥) = (𝐵𝑥))))
118, 9, 10syl2an 493 . . . . . . . 8 ((𝐴 No 𝐵 No ) → (𝐴 = 𝐵 ↔ (dom 𝐴 = dom 𝐵 ∧ ∀𝑥 ∈ dom 𝐴(𝐴𝑥) = (𝐵𝑥))))
1211notbid 307 . . . . . . 7 ((𝐴 No 𝐵 No ) → (¬ 𝐴 = 𝐵 ↔ ¬ (dom 𝐴 = dom 𝐵 ∧ ∀𝑥 ∈ dom 𝐴(𝐴𝑥) = (𝐵𝑥))))
1312adantr 480 . . . . . 6 (((𝐴 No 𝐵 No ) ∧ (dom 𝐴 = dom 𝐵𝐴 <s 𝐵)) → (¬ 𝐴 = 𝐵 ↔ ¬ (dom 𝐴 = dom 𝐵 ∧ ∀𝑥 ∈ dom 𝐴(𝐴𝑥) = (𝐵𝑥))))
14 imnan 437 . . . . . . . . . . . 12 ((dom 𝐴 = dom 𝐵 → ¬ ∀𝑥 ∈ dom 𝐴(𝐴𝑥) = (𝐵𝑥)) ↔ ¬ (dom 𝐴 = dom 𝐵 ∧ ∀𝑥 ∈ dom 𝐴(𝐴𝑥) = (𝐵𝑥)))
1514biimpri 217 . . . . . . . . . . 11 (¬ (dom 𝐴 = dom 𝐵 ∧ ∀𝑥 ∈ dom 𝐴(𝐴𝑥) = (𝐵𝑥)) → (dom 𝐴 = dom 𝐵 → ¬ ∀𝑥 ∈ dom 𝐴(𝐴𝑥) = (𝐵𝑥)))
1615impcom 445 . . . . . . . . . 10 ((dom 𝐴 = dom 𝐵 ∧ ¬ (dom 𝐴 = dom 𝐵 ∧ ∀𝑥 ∈ dom 𝐴(𝐴𝑥) = (𝐵𝑥))) → ¬ ∀𝑥 ∈ dom 𝐴(𝐴𝑥) = (𝐵𝑥))
17 df-ne 2782 . . . . . . . . . . . . 13 ((𝐴𝑥) ≠ (𝐵𝑥) ↔ ¬ (𝐴𝑥) = (𝐵𝑥))
1817rexbii 3023 . . . . . . . . . . . 12 (∃𝑥 ∈ dom 𝐴(𝐴𝑥) ≠ (𝐵𝑥) ↔ ∃𝑥 ∈ dom 𝐴 ¬ (𝐴𝑥) = (𝐵𝑥))
19 rexnal 2978 . . . . . . . . . . . 12 (∃𝑥 ∈ dom 𝐴 ¬ (𝐴𝑥) = (𝐵𝑥) ↔ ¬ ∀𝑥 ∈ dom 𝐴(𝐴𝑥) = (𝐵𝑥))
2018, 19bitri 263 . . . . . . . . . . 11 (∃𝑥 ∈ dom 𝐴(𝐴𝑥) ≠ (𝐵𝑥) ↔ ¬ ∀𝑥 ∈ dom 𝐴(𝐴𝑥) = (𝐵𝑥))
21 nodenselem4 31083 . . . . . . . . . . . . . . 15 (((𝐴 No 𝐵 No ) ∧ 𝐴 <s 𝐵) → {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ∈ On)
22 eloni 5650 . . . . . . . . . . . . . . 15 ( {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ∈ On → Ord {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})
2321, 22syl 17 . . . . . . . . . . . . . 14 (((𝐴 No 𝐵 No ) ∧ 𝐴 <s 𝐵) → Ord {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})
2423adantr 480 . . . . . . . . . . . . 13 ((((𝐴 No 𝐵 No ) ∧ 𝐴 <s 𝐵) ∧ (𝑥 ∈ dom 𝐴 ∧ (𝐴𝑥) ≠ (𝐵𝑥))) → Ord {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})
25 nodmord 31050 . . . . . . . . . . . . . 14 (𝐴 No → Ord dom 𝐴)
2625ad3antrrr 762 . . . . . . . . . . . . 13 ((((𝐴 No 𝐵 No ) ∧ 𝐴 <s 𝐵) ∧ (𝑥 ∈ dom 𝐴 ∧ (𝐴𝑥) ≠ (𝐵𝑥))) → Ord dom 𝐴)
27 nodmon 31047 . . . . . . . . . . . . . . . . . . 19 (𝐴 No → dom 𝐴 ∈ On)
28 onelon 5665 . . . . . . . . . . . . . . . . . . 19 ((dom 𝐴 ∈ On ∧ 𝑥 ∈ dom 𝐴) → 𝑥 ∈ On)
2927, 28sylan 487 . . . . . . . . . . . . . . . . . 18 ((𝐴 No 𝑥 ∈ dom 𝐴) → 𝑥 ∈ On)
3029ex 449 . . . . . . . . . . . . . . . . 17 (𝐴 No → (𝑥 ∈ dom 𝐴𝑥 ∈ On))
3130ad2antrr 758 . . . . . . . . . . . . . . . 16 (((𝐴 No 𝐵 No ) ∧ 𝐴 <s 𝐵) → (𝑥 ∈ dom 𝐴𝑥 ∈ On))
3231anim1d 586 . . . . . . . . . . . . . . 15 (((𝐴 No 𝐵 No ) ∧ 𝐴 <s 𝐵) → ((𝑥 ∈ dom 𝐴 ∧ (𝐴𝑥) ≠ (𝐵𝑥)) → (𝑥 ∈ On ∧ (𝐴𝑥) ≠ (𝐵𝑥))))
3332imp 444 . . . . . . . . . . . . . 14 ((((𝐴 No 𝐵 No ) ∧ 𝐴 <s 𝐵) ∧ (𝑥 ∈ dom 𝐴 ∧ (𝐴𝑥) ≠ (𝐵𝑥))) → (𝑥 ∈ On ∧ (𝐴𝑥) ≠ (𝐵𝑥)))
34 fveq2 6103 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑥 → (𝐴𝑎) = (𝐴𝑥))
35 fveq2 6103 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑥 → (𝐵𝑎) = (𝐵𝑥))
3634, 35neeq12d 2843 . . . . . . . . . . . . . . 15 (𝑎 = 𝑥 → ((𝐴𝑎) ≠ (𝐵𝑎) ↔ (𝐴𝑥) ≠ (𝐵𝑥)))
3736intminss 4438 . . . . . . . . . . . . . 14 ((𝑥 ∈ On ∧ (𝐴𝑥) ≠ (𝐵𝑥)) → {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ⊆ 𝑥)
3833, 37syl 17 . . . . . . . . . . . . 13 ((((𝐴 No 𝐵 No ) ∧ 𝐴 <s 𝐵) ∧ (𝑥 ∈ dom 𝐴 ∧ (𝐴𝑥) ≠ (𝐵𝑥))) → {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ⊆ 𝑥)
39 simprl 790 . . . . . . . . . . . . 13 ((((𝐴 No 𝐵 No ) ∧ 𝐴 <s 𝐵) ∧ (𝑥 ∈ dom 𝐴 ∧ (𝐴𝑥) ≠ (𝐵𝑥))) → 𝑥 ∈ dom 𝐴)
40 ordtr2 5685 . . . . . . . . . . . . . 14 ((Ord {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ∧ Ord dom 𝐴) → (( {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ⊆ 𝑥𝑥 ∈ dom 𝐴) → {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ∈ dom 𝐴))
4140imp 444 . . . . . . . . . . . . 13 (((Ord {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ∧ Ord dom 𝐴) ∧ ( {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ⊆ 𝑥𝑥 ∈ dom 𝐴)) → {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ∈ dom 𝐴)
4224, 26, 38, 39, 41syl22anc 1319 . . . . . . . . . . . 12 ((((𝐴 No 𝐵 No ) ∧ 𝐴 <s 𝐵) ∧ (𝑥 ∈ dom 𝐴 ∧ (𝐴𝑥) ≠ (𝐵𝑥))) → {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ∈ dom 𝐴)
4342rexlimdvaa 3014 . . . . . . . . . . 11 (((𝐴 No 𝐵 No ) ∧ 𝐴 <s 𝐵) → (∃𝑥 ∈ dom 𝐴(𝐴𝑥) ≠ (𝐵𝑥) → {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ∈ dom 𝐴))
4420, 43syl5bir 232 . . . . . . . . . 10 (((𝐴 No 𝐵 No ) ∧ 𝐴 <s 𝐵) → (¬ ∀𝑥 ∈ dom 𝐴(𝐴𝑥) = (𝐵𝑥) → {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ∈ dom 𝐴))
4516, 44syl5 33 . . . . . . . . 9 (((𝐴 No 𝐵 No ) ∧ 𝐴 <s 𝐵) → ((dom 𝐴 = dom 𝐵 ∧ ¬ (dom 𝐴 = dom 𝐵 ∧ ∀𝑥 ∈ dom 𝐴(𝐴𝑥) = (𝐵𝑥))) → {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ∈ dom 𝐴))
4645exp4b 630 . . . . . . . 8 ((𝐴 No 𝐵 No ) → (𝐴 <s 𝐵 → (dom 𝐴 = dom 𝐵 → (¬ (dom 𝐴 = dom 𝐵 ∧ ∀𝑥 ∈ dom 𝐴(𝐴𝑥) = (𝐵𝑥)) → {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ∈ dom 𝐴))))
4746com23 84 . . . . . . 7 ((𝐴 No 𝐵 No ) → (dom 𝐴 = dom 𝐵 → (𝐴 <s 𝐵 → (¬ (dom 𝐴 = dom 𝐵 ∧ ∀𝑥 ∈ dom 𝐴(𝐴𝑥) = (𝐵𝑥)) → {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ∈ dom 𝐴))))
4847imp32 448 . . . . . 6 (((𝐴 No 𝐵 No ) ∧ (dom 𝐴 = dom 𝐵𝐴 <s 𝐵)) → (¬ (dom 𝐴 = dom 𝐵 ∧ ∀𝑥 ∈ dom 𝐴(𝐴𝑥) = (𝐵𝑥)) → {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ∈ dom 𝐴))
4913, 48sylbid 229 . . . . 5 (((𝐴 No 𝐵 No ) ∧ (dom 𝐴 = dom 𝐵𝐴 <s 𝐵)) → (¬ 𝐴 = 𝐵 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ∈ dom 𝐴))
507, 49mpd 15 . . . 4 (((𝐴 No 𝐵 No ) ∧ (dom 𝐴 = dom 𝐵𝐴 <s 𝐵)) → {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ∈ dom 𝐴)
5150ex 449 . . 3 ((𝐴 No 𝐵 No ) → ((dom 𝐴 = dom 𝐵𝐴 <s 𝐵) → {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ∈ dom 𝐴))
52 bdayval 31045 . . . . 5 (𝐴 No → ( bday 𝐴) = dom 𝐴)
53 bdayval 31045 . . . . 5 (𝐵 No → ( bday 𝐵) = dom 𝐵)
5452, 53eqeqan12d 2626 . . . 4 ((𝐴 No 𝐵 No ) → (( bday 𝐴) = ( bday 𝐵) ↔ dom 𝐴 = dom 𝐵))
5554anbi1d 737 . . 3 ((𝐴 No 𝐵 No ) → ((( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵) ↔ (dom 𝐴 = dom 𝐵𝐴 <s 𝐵)))
5652eleq2d 2673 . . . 4 (𝐴 No → ( {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ∈ ( bday 𝐴) ↔ {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ∈ dom 𝐴))
5756adantr 480 . . 3 ((𝐴 No 𝐵 No ) → ( {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ∈ ( bday 𝐴) ↔ {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ∈ dom 𝐴))
5851, 55, 573imtr4d 282 . 2 ((𝐴 No 𝐵 No ) → ((( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵) → {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ∈ ( bday 𝐴)))
5958imp 444 1 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ∈ ( bday 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wne 2780  wral 2896  wrex 2897  {crab 2900  wss 3540   cint 4410   class class class wbr 4583  dom cdm 5038  Ord word 5639  Oncon0 5640  Fun wfun 5798  cfv 5804   No csur 31037   <s cslt 31038   bday cbday 31039
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-ord 5643  df-on 5644  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-1o 7447  df-2o 7448  df-no 31040  df-slt 31041  df-bday 31042
This theorem is referenced by:  nodenselem6  31085  nodenselem8  31087  nodense  31088
  Copyright terms: Public domain W3C validator