Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nodenselem5 Structured version   Unicode version

Theorem nodenselem5 29685
Description: Lemma for nodense 29689. If the birthdays of two distinct surreals are equal, then the ordinal from nodenselem4 29684 is an element of that birthday. (Contributed by Scott Fenton, 16-Jun-2011.)
Assertion
Ref Expression
nodenselem5  |-  ( ( ( A  e.  No  /\  B  e.  No )  /\  ( ( bday `  A )  =  (
bday `  B )  /\  A <s B ) )  ->  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  ( bday `  A )
)
Distinct variable groups:    A, a    B, a

Proof of Theorem nodenselem5
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 sltirr 29670 . . . . . . . . 9  |-  ( A  e.  No  ->  -.  A <s A )
2 breq2 4443 . . . . . . . . . 10  |-  ( A  =  B  ->  ( A <s A  <->  A <s B ) )
32notbid 292 . . . . . . . . 9  |-  ( A  =  B  ->  ( -.  A <s A  <->  -.  A <s B ) )
41, 3syl5ibcom 220 . . . . . . . 8  |-  ( A  e.  No  ->  ( A  =  B  ->  -.  A <s B ) )
54con2d 115 . . . . . . 7  |-  ( A  e.  No  ->  ( A <s B  ->  -.  A  =  B
) )
65imp 427 . . . . . 6  |-  ( ( A  e.  No  /\  A <s B )  ->  -.  A  =  B )
76ad2ant2rl 746 . . . . 5  |-  ( ( ( A  e.  No  /\  B  e.  No )  /\  ( dom  A  =  dom  B  /\  A <s B ) )  ->  -.  A  =  B )
8 nofun 29649 . . . . . . . . 9  |-  ( A  e.  No  ->  Fun  A )
9 nofun 29649 . . . . . . . . 9  |-  ( B  e.  No  ->  Fun  B )
10 eqfunfv 5962 . . . . . . . . 9  |-  ( ( Fun  A  /\  Fun  B )  ->  ( A  =  B  <->  ( dom  A  =  dom  B  /\  A. x  e.  dom  A ( A `  x )  =  ( B `  x ) ) ) )
118, 9, 10syl2an 475 . . . . . . . 8  |-  ( ( A  e.  No  /\  B  e.  No )  ->  ( A  =  B  <-> 
( dom  A  =  dom  B  /\  A. x  e.  dom  A ( A `
 x )  =  ( B `  x
) ) ) )
1211notbid 292 . . . . . . 7  |-  ( ( A  e.  No  /\  B  e.  No )  ->  ( -.  A  =  B  <->  -.  ( dom  A  =  dom  B  /\  A. x  e.  dom  A
( A `  x
)  =  ( B `
 x ) ) ) )
1312adantr 463 . . . . . 6  |-  ( ( ( A  e.  No  /\  B  e.  No )  /\  ( dom  A  =  dom  B  /\  A <s B ) )  ->  ( -.  A  =  B  <->  -.  ( dom  A  =  dom  B  /\  A. x  e.  dom  A
( A `  x
)  =  ( B `
 x ) ) ) )
14 imnan 420 . . . . . . . . . . . 12  |-  ( ( dom  A  =  dom  B  ->  -.  A. x  e.  dom  A ( A `
 x )  =  ( B `  x
) )  <->  -.  ( dom  A  =  dom  B  /\  A. x  e.  dom  A ( A `  x
)  =  ( B `
 x ) ) )
1514biimpri 206 . . . . . . . . . . 11  |-  ( -.  ( dom  A  =  dom  B  /\  A. x  e.  dom  A ( A `  x )  =  ( B `  x ) )  -> 
( dom  A  =  dom  B  ->  -.  A. x  e.  dom  A ( A `
 x )  =  ( B `  x
) ) )
1615impcom 428 . . . . . . . . . 10  |-  ( ( dom  A  =  dom  B  /\  -.  ( dom 
A  =  dom  B  /\  A. x  e.  dom  A ( A `  x
)  =  ( B `
 x ) ) )  ->  -.  A. x  e.  dom  A ( A `
 x )  =  ( B `  x
) )
17 df-ne 2651 . . . . . . . . . . . . 13  |-  ( ( A `  x )  =/=  ( B `  x )  <->  -.  ( A `  x )  =  ( B `  x ) )
1817rexbii 2956 . . . . . . . . . . . 12  |-  ( E. x  e.  dom  A
( A `  x
)  =/=  ( B `
 x )  <->  E. x  e.  dom  A  -.  ( A `  x )  =  ( B `  x ) )
19 rexnal 2902 . . . . . . . . . . . 12  |-  ( E. x  e.  dom  A  -.  ( A `  x
)  =  ( B `
 x )  <->  -.  A. x  e.  dom  A ( A `
 x )  =  ( B `  x
) )
2018, 19bitri 249 . . . . . . . . . . 11  |-  ( E. x  e.  dom  A
( A `  x
)  =/=  ( B `
 x )  <->  -.  A. x  e.  dom  A ( A `
 x )  =  ( B `  x
) )
21 nodenselem4 29684 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  No  /\  B  e.  No )  /\  A <s
B )  ->  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  On )
22 eloni 4877 . . . . . . . . . . . . . . 15  |-  ( |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) }  e.  On  ->  Ord  |^|
{ a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )
2321, 22syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  No  /\  B  e.  No )  /\  A <s
B )  ->  Ord  |^|
{ a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )
2423adantr 463 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  No  /\  B  e.  No )  /\  A <s B )  /\  ( x  e.  dom  A  /\  ( A `  x )  =/=  ( B `  x )
) )  ->  Ord  |^|
{ a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )
25 nodmord 29653 . . . . . . . . . . . . . 14  |-  ( A  e.  No  ->  Ord  dom 
A )
2625ad3antrrr 727 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  No  /\  B  e.  No )  /\  A <s B )  /\  ( x  e.  dom  A  /\  ( A `  x )  =/=  ( B `  x )
) )  ->  Ord  dom 
A )
27 nodmon 29650 . . . . . . . . . . . . . . . . . . 19  |-  ( A  e.  No  ->  dom  A  e.  On )
28 onelon 4892 . . . . . . . . . . . . . . . . . . 19  |-  ( ( dom  A  e.  On  /\  x  e.  dom  A
)  ->  x  e.  On )
2927, 28sylan 469 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  e.  No  /\  x  e.  dom  A )  ->  x  e.  On )
3029ex 432 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  No  ->  (
x  e.  dom  A  ->  x  e.  On ) )
3130ad2antrr 723 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  No  /\  B  e.  No )  /\  A <s
B )  ->  (
x  e.  dom  A  ->  x  e.  On ) )
3231anim1d 562 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  No  /\  B  e.  No )  /\  A <s
B )  ->  (
( x  e.  dom  A  /\  ( A `  x )  =/=  ( B `  x )
)  ->  ( x  e.  On  /\  ( A `
 x )  =/=  ( B `  x
) ) ) )
3332imp 427 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  No  /\  B  e.  No )  /\  A <s B )  /\  ( x  e.  dom  A  /\  ( A `  x )  =/=  ( B `  x )
) )  ->  (
x  e.  On  /\  ( A `  x )  =/=  ( B `  x ) ) )
34 fveq2 5848 . . . . . . . . . . . . . . . 16  |-  ( a  =  x  ->  ( A `  a )  =  ( A `  x ) )
35 fveq2 5848 . . . . . . . . . . . . . . . 16  |-  ( a  =  x  ->  ( B `  a )  =  ( B `  x ) )
3634, 35neeq12d 2733 . . . . . . . . . . . . . . 15  |-  ( a  =  x  ->  (
( A `  a
)  =/=  ( B `
 a )  <->  ( A `  x )  =/=  ( B `  x )
) )
3736intminss 4298 . . . . . . . . . . . . . 14  |-  ( ( x  e.  On  /\  ( A `  x )  =/=  ( B `  x ) )  ->  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  C_  x )
3833, 37syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  No  /\  B  e.  No )  /\  A <s B )  /\  ( x  e.  dom  A  /\  ( A `  x )  =/=  ( B `  x )
) )  ->  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  C_  x )
39 simprl 754 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  No  /\  B  e.  No )  /\  A <s B )  /\  ( x  e.  dom  A  /\  ( A `  x )  =/=  ( B `  x )
) )  ->  x  e.  dom  A )
40 ordtr2 4911 . . . . . . . . . . . . . 14  |-  ( ( Ord  |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) }  /\  Ord  dom 
A )  ->  (
( |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) }  C_  x  /\  x  e.  dom  A )  ->  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  dom  A ) )
4140imp 427 . . . . . . . . . . . . 13  |-  ( ( ( Ord  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  /\  Ord  dom  A )  /\  ( |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) }  C_  x  /\  x  e.  dom  A ) )  ->  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  dom  A )
4224, 26, 38, 39, 41syl22anc 1227 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  No  /\  B  e.  No )  /\  A <s B )  /\  ( x  e.  dom  A  /\  ( A `  x )  =/=  ( B `  x )
) )  ->  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  dom  A )
4342rexlimdvaa 2947 . . . . . . . . . . 11  |-  ( ( ( A  e.  No  /\  B  e.  No )  /\  A <s
B )  ->  ( E. x  e.  dom  A ( A `  x
)  =/=  ( B `
 x )  ->  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  dom  A ) )
4420, 43syl5bir 218 . . . . . . . . . 10  |-  ( ( ( A  e.  No  /\  B  e.  No )  /\  A <s
B )  ->  ( -.  A. x  e.  dom  A ( A `  x
)  =  ( B `
 x )  ->  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  dom  A ) )
4516, 44syl5 32 . . . . . . . . 9  |-  ( ( ( A  e.  No  /\  B  e.  No )  /\  A <s
B )  ->  (
( dom  A  =  dom  B  /\  -.  ( dom  A  =  dom  B  /\  A. x  e.  dom  A ( A `  x
)  =  ( B `
 x ) ) )  ->  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  dom  A ) )
4645exp4b 605 . . . . . . . 8  |-  ( ( A  e.  No  /\  B  e.  No )  ->  ( A <s
B  ->  ( dom  A  =  dom  B  -> 
( -.  ( dom 
A  =  dom  B  /\  A. x  e.  dom  A ( A `  x
)  =  ( B `
 x ) )  ->  |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) }  e.  dom  A ) ) ) )
4746com23 78 . . . . . . 7  |-  ( ( A  e.  No  /\  B  e.  No )  ->  ( dom  A  =  dom  B  ->  ( A <s B  -> 
( -.  ( dom 
A  =  dom  B  /\  A. x  e.  dom  A ( A `  x
)  =  ( B `
 x ) )  ->  |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) }  e.  dom  A ) ) ) )
4847imp32 431 . . . . . 6  |-  ( ( ( A  e.  No  /\  B  e.  No )  /\  ( dom  A  =  dom  B  /\  A <s B ) )  ->  ( -.  ( dom  A  =  dom  B  /\  A. x  e.  dom  A ( A `  x
)  =  ( B `
 x ) )  ->  |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) }  e.  dom  A ) )
4913, 48sylbid 215 . . . . 5  |-  ( ( ( A  e.  No  /\  B  e.  No )  /\  ( dom  A  =  dom  B  /\  A <s B ) )  ->  ( -.  A  =  B  ->  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  dom  A ) )
507, 49mpd 15 . . . 4  |-  ( ( ( A  e.  No  /\  B  e.  No )  /\  ( dom  A  =  dom  B  /\  A <s B ) )  ->  |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) }  e.  dom  A )
5150ex 432 . . 3  |-  ( ( A  e.  No  /\  B  e.  No )  ->  ( ( dom  A  =  dom  B  /\  A <s B )  ->  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  dom  A ) )
52 bdayval 29648 . . . . 5  |-  ( A  e.  No  ->  ( bday `  A )  =  dom  A )
53 bdayval 29648 . . . . 5  |-  ( B  e.  No  ->  ( bday `  B )  =  dom  B )
5452, 53eqeqan12d 2477 . . . 4  |-  ( ( A  e.  No  /\  B  e.  No )  ->  ( ( bday `  A
)  =  ( bday `  B )  <->  dom  A  =  dom  B ) )
5554anbi1d 702 . . 3  |-  ( ( A  e.  No  /\  B  e.  No )  ->  ( ( ( bday `  A )  =  (
bday `  B )  /\  A <s B )  <->  ( dom  A  =  dom  B  /\  A <s B ) ) )
5652eleq2d 2524 . . . 4  |-  ( A  e.  No  ->  ( |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  ( bday `  A )  <->  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  dom  A ) )
5756adantr 463 . . 3  |-  ( ( A  e.  No  /\  B  e.  No )  ->  ( |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  ( bday `  A )  <->  |^|
{ a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  dom  A ) )
5851, 55, 573imtr4d 268 . 2  |-  ( ( A  e.  No  /\  B  e.  No )  ->  ( ( ( bday `  A )  =  (
bday `  B )  /\  A <s B )  ->  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  ( bday `  A )
) )
5958imp 427 1  |-  ( ( ( A  e.  No  /\  B  e.  No )  /\  ( ( bday `  A )  =  (
bday `  B )  /\  A <s B ) )  ->  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  ( bday `  A )
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 367    = wceq 1398    e. wcel 1823    =/= wne 2649   A.wral 2804   E.wrex 2805   {crab 2808    C_ wss 3461   |^|cint 4271   class class class wbr 4439   Ord word 4866   Oncon0 4867   dom cdm 4988   Fun wfun 5564   ` cfv 5570   Nocsur 29640   <scslt 29641   bdaycbday 29642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-reu 2811  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-int 4272  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-we 4829  df-ord 4870  df-on 4871  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-1o 7122  df-2o 7123  df-no 29643  df-slt 29644  df-bday 29645
This theorem is referenced by:  nodenselem6  29686  nodenselem8  29688  nodense  29689
  Copyright terms: Public domain W3C validator