Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nodenselem6 Structured version   Visualization version   GIF version

Theorem nodenselem6 31085
Description: The restriction of a surreal to the abstraction from nodenselem4 31083 is still a surreal. (Contributed by Scott Fenton, 16-Jun-2011.)
Assertion
Ref Expression
nodenselem6 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → (𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) ∈ No )
Distinct variable groups:   𝐴,𝑎   𝐵,𝑎

Proof of Theorem nodenselem6
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nodenselem4 31083 . . . 4 (((𝐴 No 𝐵 No ) ∧ 𝐴 <s 𝐵) → {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ∈ On)
21adantrl 748 . . 3 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ∈ On)
3 nofnbday 31049 . . . . . 6 (𝐴 No 𝐴 Fn ( bday 𝐴))
43ad2antrr 758 . . . . 5 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → 𝐴 Fn ( bday 𝐴))
5 nodenselem5 31084 . . . . . 6 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ∈ ( bday 𝐴))
6 bdayelon 31079 . . . . . . 7 ( bday 𝐴) ∈ On
76onelssi 5753 . . . . . 6 ( {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ∈ ( bday 𝐴) → {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ⊆ ( bday 𝐴))
85, 7syl 17 . . . . 5 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ⊆ ( bday 𝐴))
9 fnssres 5918 . . . . 5 ((𝐴 Fn ( bday 𝐴) ∧ {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ⊆ ( bday 𝐴)) → (𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) Fn {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})
104, 8, 9syl2anc 691 . . . 4 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → (𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) Fn {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})
11 resss 5342 . . . . . 6 (𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) ⊆ 𝐴
12 rnss 5275 . . . . . 6 ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) ⊆ 𝐴 → ran (𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) ⊆ ran 𝐴)
1311, 12ax-mp 5 . . . . 5 ran (𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) ⊆ ran 𝐴
14 norn 31048 . . . . . 6 (𝐴 No → ran 𝐴 ⊆ {1𝑜, 2𝑜})
1514ad2antrr 758 . . . . 5 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → ran 𝐴 ⊆ {1𝑜, 2𝑜})
1613, 15syl5ss 3579 . . . 4 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → ran (𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) ⊆ {1𝑜, 2𝑜})
17 df-f 5808 . . . 4 ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}): {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}⟶{1𝑜, 2𝑜} ↔ ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) Fn {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ∧ ran (𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) ⊆ {1𝑜, 2𝑜}))
1810, 16, 17sylanbrc 695 . . 3 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → (𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}): {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}⟶{1𝑜, 2𝑜})
19 feq2 5940 . . . 4 (𝑥 = {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} → ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}):𝑥⟶{1𝑜, 2𝑜} ↔ (𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}): {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}⟶{1𝑜, 2𝑜}))
2019rspcev 3282 . . 3 (( {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ∈ On ∧ (𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}): {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}⟶{1𝑜, 2𝑜}) → ∃𝑥 ∈ On (𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}):𝑥⟶{1𝑜, 2𝑜})
212, 18, 20syl2anc 691 . 2 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → ∃𝑥 ∈ On (𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}):𝑥⟶{1𝑜, 2𝑜})
22 elno 31043 . 2 ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) ∈ No ↔ ∃𝑥 ∈ On (𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}):𝑥⟶{1𝑜, 2𝑜})
2321, 22sylibr 223 1 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → (𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) ∈ No )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  wne 2780  wrex 2897  {crab 2900  wss 3540  {cpr 4127   cint 4410   class class class wbr 4583  ran crn 5039  cres 5040  Oncon0 5640   Fn wfn 5799  wf 5800  cfv 5804  1𝑜c1o 7440  2𝑜c2o 7441   No csur 31037   <s cslt 31038   bday cbday 31039
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-ord 5643  df-on 5644  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-1o 7447  df-2o 7448  df-no 31040  df-slt 31041  df-bday 31042
This theorem is referenced by:  nodense  31088
  Copyright terms: Public domain W3C validator