MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfun2 Structured version   Visualization version   GIF version

Theorem dfun2 3821
Description: An alternate definition of the union of two classes in terms of class difference, requiring no dummy variables. Along with dfin2 3822 and dfss4 3820 it shows we can express union, intersection, and subset directly in terms of the single "primitive" operation (class difference). (Contributed by NM, 10-Jun-2004.)
Assertion
Ref Expression
dfun2 (𝐴𝐵) = (V ∖ ((V ∖ 𝐴) ∖ 𝐵))

Proof of Theorem dfun2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 vex 3176 . . . . . . 7 𝑥 ∈ V
2 eldif 3550 . . . . . . 7 (𝑥 ∈ (V ∖ 𝐴) ↔ (𝑥 ∈ V ∧ ¬ 𝑥𝐴))
31, 2mpbiran 955 . . . . . 6 (𝑥 ∈ (V ∖ 𝐴) ↔ ¬ 𝑥𝐴)
43anbi1i 727 . . . . 5 ((𝑥 ∈ (V ∖ 𝐴) ∧ ¬ 𝑥𝐵) ↔ (¬ 𝑥𝐴 ∧ ¬ 𝑥𝐵))
5 eldif 3550 . . . . 5 (𝑥 ∈ ((V ∖ 𝐴) ∖ 𝐵) ↔ (𝑥 ∈ (V ∖ 𝐴) ∧ ¬ 𝑥𝐵))
6 ioran 510 . . . . 5 (¬ (𝑥𝐴𝑥𝐵) ↔ (¬ 𝑥𝐴 ∧ ¬ 𝑥𝐵))
74, 5, 63bitr4i 291 . . . 4 (𝑥 ∈ ((V ∖ 𝐴) ∖ 𝐵) ↔ ¬ (𝑥𝐴𝑥𝐵))
87con2bii 346 . . 3 ((𝑥𝐴𝑥𝐵) ↔ ¬ 𝑥 ∈ ((V ∖ 𝐴) ∖ 𝐵))
9 eldif 3550 . . . 4 (𝑥 ∈ (V ∖ ((V ∖ 𝐴) ∖ 𝐵)) ↔ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ ((V ∖ 𝐴) ∖ 𝐵)))
101, 9mpbiran 955 . . 3 (𝑥 ∈ (V ∖ ((V ∖ 𝐴) ∖ 𝐵)) ↔ ¬ 𝑥 ∈ ((V ∖ 𝐴) ∖ 𝐵))
118, 10bitr4i 266 . 2 ((𝑥𝐴𝑥𝐵) ↔ 𝑥 ∈ (V ∖ ((V ∖ 𝐴) ∖ 𝐵)))
1211uneqri 3717 1 (𝐴𝐵) = (V ∖ ((V ∖ 𝐴) ∖ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wo 382  wa 383   = wceq 1475  wcel 1977  Vcvv 3173  cdif 3537  cun 3538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-v 3175  df-dif 3543  df-un 3545
This theorem is referenced by:  dfun3  3824  dfin3  3825
  Copyright terms: Public domain W3C validator