MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfsup2 Structured version   Visualization version   GIF version

Theorem dfsup2 8233
Description: Quantifier free definition of supremum. (Contributed by Scott Fenton, 19-Feb-2013.)
Assertion
Ref Expression
dfsup2 sup(𝐵, 𝐴, 𝑅) = (𝐴 ∖ ((𝑅𝐵) ∪ (𝑅 “ (𝐴 ∖ (𝑅𝐵)))))

Proof of Theorem dfsup2
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-sup 8231 . 2 sup(𝐵, 𝐴, 𝑅) = {𝑥𝐴 ∣ (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))}
2 dfrab3 3861 . . . 4 {𝑥𝐴 ∣ (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))} = (𝐴 ∩ {𝑥 ∣ (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))})
3 abeq1 2720 . . . . . . 7 ({𝑥 ∣ (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))} = (V ∖ ((𝑅𝐵) ∪ (𝑅 “ (𝐴 ∖ (𝑅𝐵))))) ↔ ∀𝑥((∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)) ↔ 𝑥 ∈ (V ∖ ((𝑅𝐵) ∪ (𝑅 “ (𝐴 ∖ (𝑅𝐵)))))))
4 vex 3176 . . . . . . . . 9 𝑥 ∈ V
5 eldif 3550 . . . . . . . . 9 (𝑥 ∈ (V ∖ ((𝑅𝐵) ∪ (𝑅 “ (𝐴 ∖ (𝑅𝐵))))) ↔ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ ((𝑅𝐵) ∪ (𝑅 “ (𝐴 ∖ (𝑅𝐵))))))
64, 5mpbiran 955 . . . . . . . 8 (𝑥 ∈ (V ∖ ((𝑅𝐵) ∪ (𝑅 “ (𝐴 ∖ (𝑅𝐵))))) ↔ ¬ 𝑥 ∈ ((𝑅𝐵) ∪ (𝑅 “ (𝐴 ∖ (𝑅𝐵)))))
74elima 5390 . . . . . . . . . . . 12 (𝑥 ∈ (𝑅𝐵) ↔ ∃𝑦𝐵 𝑦𝑅𝑥)
8 dfrex2 2979 . . . . . . . . . . . 12 (∃𝑦𝐵 𝑦𝑅𝑥 ↔ ¬ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥)
97, 8bitri 263 . . . . . . . . . . 11 (𝑥 ∈ (𝑅𝐵) ↔ ¬ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥)
104elima 5390 . . . . . . . . . . . 12 (𝑥 ∈ (𝑅 “ (𝐴 ∖ (𝑅𝐵))) ↔ ∃𝑦 ∈ (𝐴 ∖ (𝑅𝐵))𝑦𝑅𝑥)
11 dfrex2 2979 . . . . . . . . . . . 12 (∃𝑦 ∈ (𝐴 ∖ (𝑅𝐵))𝑦𝑅𝑥 ↔ ¬ ∀𝑦 ∈ (𝐴 ∖ (𝑅𝐵)) ¬ 𝑦𝑅𝑥)
1210, 11bitri 263 . . . . . . . . . . 11 (𝑥 ∈ (𝑅 “ (𝐴 ∖ (𝑅𝐵))) ↔ ¬ ∀𝑦 ∈ (𝐴 ∖ (𝑅𝐵)) ¬ 𝑦𝑅𝑥)
139, 12orbi12i 542 . . . . . . . . . 10 ((𝑥 ∈ (𝑅𝐵) ∨ 𝑥 ∈ (𝑅 “ (𝐴 ∖ (𝑅𝐵)))) ↔ (¬ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∨ ¬ ∀𝑦 ∈ (𝐴 ∖ (𝑅𝐵)) ¬ 𝑦𝑅𝑥))
14 elun 3715 . . . . . . . . . 10 (𝑥 ∈ ((𝑅𝐵) ∪ (𝑅 “ (𝐴 ∖ (𝑅𝐵)))) ↔ (𝑥 ∈ (𝑅𝐵) ∨ 𝑥 ∈ (𝑅 “ (𝐴 ∖ (𝑅𝐵)))))
15 ianor 508 . . . . . . . . . 10 (¬ (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ (𝐴 ∖ (𝑅𝐵)) ¬ 𝑦𝑅𝑥) ↔ (¬ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∨ ¬ ∀𝑦 ∈ (𝐴 ∖ (𝑅𝐵)) ¬ 𝑦𝑅𝑥))
1613, 14, 153bitr4i 291 . . . . . . . . 9 (𝑥 ∈ ((𝑅𝐵) ∪ (𝑅 “ (𝐴 ∖ (𝑅𝐵)))) ↔ ¬ (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ (𝐴 ∖ (𝑅𝐵)) ¬ 𝑦𝑅𝑥))
1716con2bii 346 . . . . . . . 8 ((∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ (𝐴 ∖ (𝑅𝐵)) ¬ 𝑦𝑅𝑥) ↔ ¬ 𝑥 ∈ ((𝑅𝐵) ∪ (𝑅 “ (𝐴 ∖ (𝑅𝐵)))))
18 vex 3176 . . . . . . . . . . . 12 𝑦 ∈ V
1918, 4brcnv 5227 . . . . . . . . . . 11 (𝑦𝑅𝑥𝑥𝑅𝑦)
2019notbii 309 . . . . . . . . . 10 𝑦𝑅𝑥 ↔ ¬ 𝑥𝑅𝑦)
2120ralbii 2963 . . . . . . . . 9 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ↔ ∀𝑦𝐵 ¬ 𝑥𝑅𝑦)
22 impexp 461 . . . . . . . . . . 11 (((𝑦𝐴 ∧ ¬ 𝑦 ∈ (𝑅𝐵)) → ¬ 𝑦𝑅𝑥) ↔ (𝑦𝐴 → (¬ 𝑦 ∈ (𝑅𝐵) → ¬ 𝑦𝑅𝑥)))
23 eldif 3550 . . . . . . . . . . . 12 (𝑦 ∈ (𝐴 ∖ (𝑅𝐵)) ↔ (𝑦𝐴 ∧ ¬ 𝑦 ∈ (𝑅𝐵)))
2423imbi1i 338 . . . . . . . . . . 11 ((𝑦 ∈ (𝐴 ∖ (𝑅𝐵)) → ¬ 𝑦𝑅𝑥) ↔ ((𝑦𝐴 ∧ ¬ 𝑦 ∈ (𝑅𝐵)) → ¬ 𝑦𝑅𝑥))
2518elima 5390 . . . . . . . . . . . . . . 15 (𝑦 ∈ (𝑅𝐵) ↔ ∃𝑧𝐵 𝑧𝑅𝑦)
26 vex 3176 . . . . . . . . . . . . . . . . 17 𝑧 ∈ V
2726, 18brcnv 5227 . . . . . . . . . . . . . . . 16 (𝑧𝑅𝑦𝑦𝑅𝑧)
2827rexbii 3023 . . . . . . . . . . . . . . 15 (∃𝑧𝐵 𝑧𝑅𝑦 ↔ ∃𝑧𝐵 𝑦𝑅𝑧)
2925, 28bitri 263 . . . . . . . . . . . . . 14 (𝑦 ∈ (𝑅𝐵) ↔ ∃𝑧𝐵 𝑦𝑅𝑧)
3029imbi2i 325 . . . . . . . . . . . . 13 ((𝑦𝑅𝑥𝑦 ∈ (𝑅𝐵)) ↔ (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))
31 con34b 305 . . . . . . . . . . . . 13 ((𝑦𝑅𝑥𝑦 ∈ (𝑅𝐵)) ↔ (¬ 𝑦 ∈ (𝑅𝐵) → ¬ 𝑦𝑅𝑥))
3230, 31bitr3i 265 . . . . . . . . . . . 12 ((𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧) ↔ (¬ 𝑦 ∈ (𝑅𝐵) → ¬ 𝑦𝑅𝑥))
3332imbi2i 325 . . . . . . . . . . 11 ((𝑦𝐴 → (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)) ↔ (𝑦𝐴 → (¬ 𝑦 ∈ (𝑅𝐵) → ¬ 𝑦𝑅𝑥)))
3422, 24, 333bitr4i 291 . . . . . . . . . 10 ((𝑦 ∈ (𝐴 ∖ (𝑅𝐵)) → ¬ 𝑦𝑅𝑥) ↔ (𝑦𝐴 → (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))
3534ralbii2 2961 . . . . . . . . 9 (∀𝑦 ∈ (𝐴 ∖ (𝑅𝐵)) ¬ 𝑦𝑅𝑥 ↔ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))
3621, 35anbi12i 729 . . . . . . . 8 ((∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ (𝐴 ∖ (𝑅𝐵)) ¬ 𝑦𝑅𝑥) ↔ (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))
376, 17, 363bitr2ri 288 . . . . . . 7 ((∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)) ↔ 𝑥 ∈ (V ∖ ((𝑅𝐵) ∪ (𝑅 “ (𝐴 ∖ (𝑅𝐵))))))
383, 37mpgbir 1717 . . . . . 6 {𝑥 ∣ (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))} = (V ∖ ((𝑅𝐵) ∪ (𝑅 “ (𝐴 ∖ (𝑅𝐵)))))
3938ineq2i 3773 . . . . 5 (𝐴 ∩ {𝑥 ∣ (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))}) = (𝐴 ∩ (V ∖ ((𝑅𝐵) ∪ (𝑅 “ (𝐴 ∖ (𝑅𝐵))))))
40 invdif 3827 . . . . 5 (𝐴 ∩ (V ∖ ((𝑅𝐵) ∪ (𝑅 “ (𝐴 ∖ (𝑅𝐵)))))) = (𝐴 ∖ ((𝑅𝐵) ∪ (𝑅 “ (𝐴 ∖ (𝑅𝐵)))))
4139, 40eqtri 2632 . . . 4 (𝐴 ∩ {𝑥 ∣ (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))}) = (𝐴 ∖ ((𝑅𝐵) ∪ (𝑅 “ (𝐴 ∖ (𝑅𝐵)))))
422, 41eqtri 2632 . . 3 {𝑥𝐴 ∣ (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))} = (𝐴 ∖ ((𝑅𝐵) ∪ (𝑅 “ (𝐴 ∖ (𝑅𝐵)))))
4342unieqi 4381 . 2 {𝑥𝐴 ∣ (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))} = (𝐴 ∖ ((𝑅𝐵) ∪ (𝑅 “ (𝐴 ∖ (𝑅𝐵)))))
441, 43eqtri 2632 1 sup(𝐵, 𝐴, 𝑅) = (𝐴 ∖ ((𝑅𝐵) ∪ (𝑅 “ (𝐴 ∖ (𝑅𝐵)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383   = wceq 1475  wcel 1977  {cab 2596  wral 2896  wrex 2897  {crab 2900  Vcvv 3173  cdif 3537  cun 3538  cin 3539   cuni 4372   class class class wbr 4583  ccnv 5037  cima 5041  supcsup 8229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-xp 5044  df-cnv 5046  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-sup 8231
This theorem is referenced by:  nfsup  8240
  Copyright terms: Public domain W3C validator