MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfsup2 Structured version   Unicode version

Theorem dfsup2 7898
Description: Quantifier free definition of supremum. (Contributed by Scott Fenton, 19-Feb-2013.)
Assertion
Ref Expression
dfsup2  |-  sup ( B ,  A ,  R )  =  U. ( A  \  (
( `' R " B )  u.  ( R " ( A  \ 
( `' R " B ) ) ) ) )

Proof of Theorem dfsup2
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-sup 7897 . 2  |-  sup ( B ,  A ,  R )  =  U. { x  e.  A  |  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  (
y R x  ->  E. z  e.  B  y R z ) ) }
2 dfrab3 3773 . . . 4  |-  { x  e.  A  |  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) ) }  =  ( A  i^i  { x  |  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R
z ) ) } )
3 abeq1 2592 . . . . . . 7  |-  ( { x  |  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  (
y R x  ->  E. z  e.  B  y R z ) ) }  =  ( _V 
\  ( ( `' R " B )  u.  ( R "
( A  \  ( `' R " B ) ) ) ) )  <->  A. x ( ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  (
y R x  ->  E. z  e.  B  y R z ) )  <-> 
x  e.  ( _V 
\  ( ( `' R " B )  u.  ( R "
( A  \  ( `' R " B ) ) ) ) ) ) )
4 vex 3116 . . . . . . . . 9  |-  x  e. 
_V
5 eldif 3486 . . . . . . . . 9  |-  ( x  e.  ( _V  \ 
( ( `' R " B )  u.  ( R " ( A  \ 
( `' R " B ) ) ) ) )  <->  ( x  e.  _V  /\  -.  x  e.  ( ( `' R " B )  u.  ( R " ( A  \ 
( `' R " B ) ) ) ) ) )
64, 5mpbiran 916 . . . . . . . 8  |-  ( x  e.  ( _V  \ 
( ( `' R " B )  u.  ( R " ( A  \ 
( `' R " B ) ) ) ) )  <->  -.  x  e.  ( ( `' R " B )  u.  ( R " ( A  \ 
( `' R " B ) ) ) ) )
74elima 5340 . . . . . . . . . . . 12  |-  ( x  e.  ( `' R " B )  <->  E. y  e.  B  y `' R x )
8 dfrex2 2915 . . . . . . . . . . . 12  |-  ( E. y  e.  B  y `' R x  <->  -.  A. y  e.  B  -.  y `' R x )
97, 8bitri 249 . . . . . . . . . . 11  |-  ( x  e.  ( `' R " B )  <->  -.  A. y  e.  B  -.  y `' R x )
104elima 5340 . . . . . . . . . . . 12  |-  ( x  e.  ( R "
( A  \  ( `' R " B ) ) )  <->  E. y  e.  ( A  \  ( `' R " B ) ) y R x )
11 dfrex2 2915 . . . . . . . . . . . 12  |-  ( E. y  e.  ( A 
\  ( `' R " B ) ) y R x  <->  -.  A. y  e.  ( A  \  ( `' R " B ) )  -.  y R x )
1210, 11bitri 249 . . . . . . . . . . 11  |-  ( x  e.  ( R "
( A  \  ( `' R " B ) ) )  <->  -.  A. y  e.  ( A  \  ( `' R " B ) )  -.  y R x )
139, 12orbi12i 521 . . . . . . . . . 10  |-  ( ( x  e.  ( `' R " B )  \/  x  e.  ( R " ( A 
\  ( `' R " B ) ) ) )  <->  ( -.  A. y  e.  B  -.  y `' R x  \/  -.  A. y  e.  ( A 
\  ( `' R " B ) )  -.  y R x ) )
14 elun 3645 . . . . . . . . . 10  |-  ( x  e.  ( ( `' R " B )  u.  ( R "
( A  \  ( `' R " B ) ) ) )  <->  ( x  e.  ( `' R " B )  \/  x  e.  ( R " ( A  \  ( `' R " B ) ) ) ) )
15 ianor 488 . . . . . . . . . 10  |-  ( -.  ( A. y  e.  B  -.  y `' R x  /\  A. y  e.  ( A  \  ( `' R " B ) )  -.  y R x )  <-> 
( -.  A. y  e.  B  -.  y `' R x  \/  -.  A. y  e.  ( A 
\  ( `' R " B ) )  -.  y R x ) )
1613, 14, 153bitr4i 277 . . . . . . . . 9  |-  ( x  e.  ( ( `' R " B )  u.  ( R "
( A  \  ( `' R " B ) ) ) )  <->  -.  ( A. y  e.  B  -.  y `' R x  /\  A. y  e.  ( A  \  ( `' R " B ) )  -.  y R x ) )
1716con2bii 332 . . . . . . . 8  |-  ( ( A. y  e.  B  -.  y `' R x  /\  A. y  e.  ( A  \  ( `' R " B ) )  -.  y R x )  <->  -.  x  e.  ( ( `' R " B )  u.  ( R " ( A  \ 
( `' R " B ) ) ) ) )
18 vex 3116 . . . . . . . . . . . 12  |-  y  e. 
_V
1918, 4brcnv 5183 . . . . . . . . . . 11  |-  ( y `' R x  <->  x R
y )
2019notbii 296 . . . . . . . . . 10  |-  ( -.  y `' R x  <->  -.  x R y )
2120ralbii 2895 . . . . . . . . 9  |-  ( A. y  e.  B  -.  y `' R x  <->  A. y  e.  B  -.  x R y )
22 impexp 446 . . . . . . . . . . 11  |-  ( ( ( y  e.  A  /\  -.  y  e.  ( `' R " B ) )  ->  -.  y R x )  <->  ( y  e.  A  ->  ( -.  y  e.  ( `' R " B )  ->  -.  y R x ) ) )
23 eldif 3486 . . . . . . . . . . . 12  |-  ( y  e.  ( A  \ 
( `' R " B ) )  <->  ( y  e.  A  /\  -.  y  e.  ( `' R " B ) ) )
2423imbi1i 325 . . . . . . . . . . 11  |-  ( ( y  e.  ( A 
\  ( `' R " B ) )  ->  -.  y R x )  <-> 
( ( y  e.  A  /\  -.  y  e.  ( `' R " B ) )  ->  -.  y R x ) )
2518elima 5340 . . . . . . . . . . . . . . 15  |-  ( y  e.  ( `' R " B )  <->  E. z  e.  B  z `' R y )
26 vex 3116 . . . . . . . . . . . . . . . . 17  |-  z  e. 
_V
2726, 18brcnv 5183 . . . . . . . . . . . . . . . 16  |-  ( z `' R y  <->  y R
z )
2827rexbii 2965 . . . . . . . . . . . . . . 15  |-  ( E. z  e.  B  z `' R y  <->  E. z  e.  B  y R
z )
2925, 28bitri 249 . . . . . . . . . . . . . 14  |-  ( y  e.  ( `' R " B )  <->  E. z  e.  B  y R
z )
3029imbi2i 312 . . . . . . . . . . . . 13  |-  ( ( y R x  -> 
y  e.  ( `' R " B ) )  <->  ( y R x  ->  E. z  e.  B  y R
z ) )
31 con34b 292 . . . . . . . . . . . . 13  |-  ( ( y R x  -> 
y  e.  ( `' R " B ) )  <->  ( -.  y  e.  ( `' R " B )  ->  -.  y R x ) )
3230, 31bitr3i 251 . . . . . . . . . . . 12  |-  ( ( y R x  ->  E. z  e.  B  y R z )  <->  ( -.  y  e.  ( `' R " B )  ->  -.  y R x ) )
3332imbi2i 312 . . . . . . . . . . 11  |-  ( ( y  e.  A  -> 
( y R x  ->  E. z  e.  B  y R z ) )  <-> 
( y  e.  A  ->  ( -.  y  e.  ( `' R " B )  ->  -.  y R x ) ) )
3422, 24, 333bitr4i 277 . . . . . . . . . 10  |-  ( ( y  e.  ( A 
\  ( `' R " B ) )  ->  -.  y R x )  <-> 
( y  e.  A  ->  ( y R x  ->  E. z  e.  B  y R z ) ) )
3534ralbii2 2893 . . . . . . . . 9  |-  ( A. y  e.  ( A  \  ( `' R " B ) )  -.  y R x  <->  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R
z ) )
3621, 35anbi12i 697 . . . . . . . 8  |-  ( ( A. y  e.  B  -.  y `' R x  /\  A. y  e.  ( A  \  ( `' R " B ) )  -.  y R x )  <->  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  (
y R x  ->  E. z  e.  B  y R z ) ) )
376, 17, 363bitr2ri 274 . . . . . . 7  |-  ( ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) )  <-> 
x  e.  ( _V 
\  ( ( `' R " B )  u.  ( R "
( A  \  ( `' R " B ) ) ) ) ) )
383, 37mpgbir 1605 . . . . . 6  |-  { x  |  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  (
y R x  ->  E. z  e.  B  y R z ) ) }  =  ( _V 
\  ( ( `' R " B )  u.  ( R "
( A  \  ( `' R " B ) ) ) ) )
3938ineq2i 3697 . . . . 5  |-  ( A  i^i  { x  |  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R
z ) ) } )  =  ( A  i^i  ( _V  \ 
( ( `' R " B )  u.  ( R " ( A  \ 
( `' R " B ) ) ) ) ) )
40 invdif 3739 . . . . 5  |-  ( A  i^i  ( _V  \ 
( ( `' R " B )  u.  ( R " ( A  \ 
( `' R " B ) ) ) ) ) )  =  ( A  \  (
( `' R " B )  u.  ( R " ( A  \ 
( `' R " B ) ) ) ) )
4139, 40eqtri 2496 . . . 4  |-  ( A  i^i  { x  |  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R
z ) ) } )  =  ( A 
\  ( ( `' R " B )  u.  ( R "
( A  \  ( `' R " B ) ) ) ) )
422, 41eqtri 2496 . . 3  |-  { x  e.  A  |  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) ) }  =  ( A 
\  ( ( `' R " B )  u.  ( R "
( A  \  ( `' R " B ) ) ) ) )
4342unieqi 4254 . 2  |-  U. {
x  e.  A  | 
( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R
z ) ) }  =  U. ( A 
\  ( ( `' R " B )  u.  ( R "
( A  \  ( `' R " B ) ) ) ) )
441, 43eqtri 2496 1  |-  sup ( B ,  A ,  R )  =  U. ( A  \  (
( `' R " B )  u.  ( R " ( A  \ 
( `' R " B ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1379    e. wcel 1767   {cab 2452   A.wral 2814   E.wrex 2815   {crab 2818   _Vcvv 3113    \ cdif 3473    u. cun 3474    i^i cin 3475   U.cuni 4245   class class class wbr 4447   `'ccnv 4998   "cima 5002   supcsup 7896
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pr 4686
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-br 4448  df-opab 4506  df-xp 5005  df-cnv 5007  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-sup 7897
This theorem is referenced by:  nfsup  7907
  Copyright terms: Public domain W3C validator