Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cxpcn Structured version   Visualization version   GIF version

Theorem cxpcn 24286
 Description: Domain of continuity of the complex power function. (Contributed by Mario Carneiro, 1-May-2016.)
Hypotheses
Ref Expression
cxpcn.d 𝐷 = (ℂ ∖ (-∞(,]0))
cxpcn.j 𝐽 = (TopOpen‘ℂfld)
cxpcn.k 𝐾 = (𝐽t 𝐷)
Assertion
Ref Expression
cxpcn (𝑥𝐷, 𝑦 ∈ ℂ ↦ (𝑥𝑐𝑦)) ∈ ((𝐾 ×t 𝐽) Cn 𝐽)
Distinct variable groups:   𝑥,𝑦,𝐷   𝑥,𝐽,𝑦   𝑥,𝐾,𝑦

Proof of Theorem cxpcn
StepHypRef Expression
1 cxpcn.d . . . . . . 7 𝐷 = (ℂ ∖ (-∞(,]0))
21ellogdm 24185 . . . . . 6 (𝑥𝐷 ↔ (𝑥 ∈ ℂ ∧ (𝑥 ∈ ℝ → 𝑥 ∈ ℝ+)))
32simplbi 475 . . . . 5 (𝑥𝐷𝑥 ∈ ℂ)
43adantr 480 . . . 4 ((𝑥𝐷𝑦 ∈ ℂ) → 𝑥 ∈ ℂ)
51logdmn0 24186 . . . . 5 (𝑥𝐷𝑥 ≠ 0)
65adantr 480 . . . 4 ((𝑥𝐷𝑦 ∈ ℂ) → 𝑥 ≠ 0)
7 simpr 476 . . . 4 ((𝑥𝐷𝑦 ∈ ℂ) → 𝑦 ∈ ℂ)
84, 6, 7cxpefd 24258 . . 3 ((𝑥𝐷𝑦 ∈ ℂ) → (𝑥𝑐𝑦) = (exp‘(𝑦 · (log‘𝑥))))
98mpt2eq3ia 6618 . 2 (𝑥𝐷, 𝑦 ∈ ℂ ↦ (𝑥𝑐𝑦)) = (𝑥𝐷, 𝑦 ∈ ℂ ↦ (exp‘(𝑦 · (log‘𝑥))))
10 cxpcn.k . . . . 5 𝐾 = (𝐽t 𝐷)
11 cxpcn.j . . . . . . . 8 𝐽 = (TopOpen‘ℂfld)
1211cnfldtopon 22396 . . . . . . 7 𝐽 ∈ (TopOn‘ℂ)
1312a1i 11 . . . . . 6 (⊤ → 𝐽 ∈ (TopOn‘ℂ))
143ssriv 3572 . . . . . 6 𝐷 ⊆ ℂ
15 resttopon 20775 . . . . . 6 ((𝐽 ∈ (TopOn‘ℂ) ∧ 𝐷 ⊆ ℂ) → (𝐽t 𝐷) ∈ (TopOn‘𝐷))
1613, 14, 15sylancl 693 . . . . 5 (⊤ → (𝐽t 𝐷) ∈ (TopOn‘𝐷))
1710, 16syl5eqel 2692 . . . 4 (⊤ → 𝐾 ∈ (TopOn‘𝐷))
1817, 13cnmpt2nd 21282 . . . . 5 (⊤ → (𝑥𝐷, 𝑦 ∈ ℂ ↦ 𝑦) ∈ ((𝐾 ×t 𝐽) Cn 𝐽))
19 fvres 6117 . . . . . . . 8 (𝑥𝐷 → ((log ↾ 𝐷)‘𝑥) = (log‘𝑥))
2019adantr 480 . . . . . . 7 ((𝑥𝐷𝑦 ∈ ℂ) → ((log ↾ 𝐷)‘𝑥) = (log‘𝑥))
2120mpt2eq3ia 6618 . . . . . 6 (𝑥𝐷, 𝑦 ∈ ℂ ↦ ((log ↾ 𝐷)‘𝑥)) = (𝑥𝐷, 𝑦 ∈ ℂ ↦ (log‘𝑥))
2217, 13cnmpt1st 21281 . . . . . . 7 (⊤ → (𝑥𝐷, 𝑦 ∈ ℂ ↦ 𝑥) ∈ ((𝐾 ×t 𝐽) Cn 𝐾))
231logcn 24193 . . . . . . . . 9 (log ↾ 𝐷) ∈ (𝐷cn→ℂ)
24 ssid 3587 . . . . . . . . . 10 ℂ ⊆ ℂ
2512toponunii 20547 . . . . . . . . . . . . . 14 ℂ = 𝐽
2625restid 15917 . . . . . . . . . . . . 13 (𝐽 ∈ (TopOn‘ℂ) → (𝐽t ℂ) = 𝐽)
2712, 26ax-mp 5 . . . . . . . . . . . 12 (𝐽t ℂ) = 𝐽
2827eqcomi 2619 . . . . . . . . . . 11 𝐽 = (𝐽t ℂ)
2911, 10, 28cncfcn 22520 . . . . . . . . . 10 ((𝐷 ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝐷cn→ℂ) = (𝐾 Cn 𝐽))
3014, 24, 29mp2an 704 . . . . . . . . 9 (𝐷cn→ℂ) = (𝐾 Cn 𝐽)
3123, 30eleqtri 2686 . . . . . . . 8 (log ↾ 𝐷) ∈ (𝐾 Cn 𝐽)
3231a1i 11 . . . . . . 7 (⊤ → (log ↾ 𝐷) ∈ (𝐾 Cn 𝐽))
3317, 13, 22, 32cnmpt21f 21285 . . . . . 6 (⊤ → (𝑥𝐷, 𝑦 ∈ ℂ ↦ ((log ↾ 𝐷)‘𝑥)) ∈ ((𝐾 ×t 𝐽) Cn 𝐽))
3421, 33syl5eqelr 2693 . . . . 5 (⊤ → (𝑥𝐷, 𝑦 ∈ ℂ ↦ (log‘𝑥)) ∈ ((𝐾 ×t 𝐽) Cn 𝐽))
3511mulcn 22478 . . . . . 6 · ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
3635a1i 11 . . . . 5 (⊤ → · ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
3717, 13, 18, 34, 36cnmpt22f 21288 . . . 4 (⊤ → (𝑥𝐷, 𝑦 ∈ ℂ ↦ (𝑦 · (log‘𝑥))) ∈ ((𝐾 ×t 𝐽) Cn 𝐽))
38 efcn 24001 . . . . . 6 exp ∈ (ℂ–cn→ℂ)
3911cncfcn1 22521 . . . . . 6 (ℂ–cn→ℂ) = (𝐽 Cn 𝐽)
4038, 39eleqtri 2686 . . . . 5 exp ∈ (𝐽 Cn 𝐽)
4140a1i 11 . . . 4 (⊤ → exp ∈ (𝐽 Cn 𝐽))
4217, 13, 37, 41cnmpt21f 21285 . . 3 (⊤ → (𝑥𝐷, 𝑦 ∈ ℂ ↦ (exp‘(𝑦 · (log‘𝑥)))) ∈ ((𝐾 ×t 𝐽) Cn 𝐽))
4342trud 1484 . 2 (𝑥𝐷, 𝑦 ∈ ℂ ↦ (exp‘(𝑦 · (log‘𝑥)))) ∈ ((𝐾 ×t 𝐽) Cn 𝐽)
449, 43eqeltri 2684 1 (𝑥𝐷, 𝑦 ∈ ℂ ↦ (𝑥𝑐𝑦)) ∈ ((𝐾 ×t 𝐽) Cn 𝐽)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1475  ⊤wtru 1476   ∈ wcel 1977   ≠ wne 2780   ∖ cdif 3537   ⊆ wss 3540   ↾ cres 5040  ‘cfv 5804  (class class class)co 6549   ↦ cmpt2 6551  ℂcc 9813  ℝcr 9814  0cc0 9815   · cmul 9820  -∞cmnf 9951  ℝ+crp 11708  (,]cioc 12047  expce 14631   ↾t crest 15904  TopOpenctopn 15905  ℂfldccnfld 19567  TopOnctopon 20518   Cn ccn 20838   ×t ctx 21173  –cn→ccncf 22487  logclog 24105  ↑𝑐ccxp 24106 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265  df-ef 14637  df-sin 14639  df-cos 14640  df-tan 14641  df-pi 14642  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-haus 20929  df-cmp 21000  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-limc 23436  df-dv 23437  df-log 24107  df-cxp 24108 This theorem is referenced by:  cxpcn2  24287  sqrtcn  24291  cxpcncf2  38786
 Copyright terms: Public domain W3C validator