Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvcnsqrt Structured version   Visualization version   GIF version

Theorem dvcnsqrt 24285
 Description: Derivative of square root function. (Contributed by Brendan Leahy, 18-Dec-2018.)
Hypothesis
Ref Expression
dvcncxp1.d 𝐷 = (ℂ ∖ (-∞(,]0))
Assertion
Ref Expression
dvcnsqrt (ℂ D (𝑥𝐷 ↦ (√‘𝑥))) = (𝑥𝐷 ↦ (1 / (2 · (√‘𝑥))))
Distinct variable group:   𝑥,𝐷

Proof of Theorem dvcnsqrt
StepHypRef Expression
1 halfcn 11124 . . 3 (1 / 2) ∈ ℂ
2 dvcncxp1.d . . . 4 𝐷 = (ℂ ∖ (-∞(,]0))
32dvcncxp1 24284 . . 3 ((1 / 2) ∈ ℂ → (ℂ D (𝑥𝐷 ↦ (𝑥𝑐(1 / 2)))) = (𝑥𝐷 ↦ ((1 / 2) · (𝑥𝑐((1 / 2) − 1)))))
41, 3ax-mp 5 . 2 (ℂ D (𝑥𝐷 ↦ (𝑥𝑐(1 / 2)))) = (𝑥𝐷 ↦ ((1 / 2) · (𝑥𝑐((1 / 2) − 1))))
5 difss 3699 . . . . . . 7 (ℂ ∖ (-∞(,]0)) ⊆ ℂ
62, 5eqsstri 3598 . . . . . 6 𝐷 ⊆ ℂ
76sseli 3564 . . . . 5 (𝑥𝐷𝑥 ∈ ℂ)
8 cxpsqrt 24249 . . . . 5 (𝑥 ∈ ℂ → (𝑥𝑐(1 / 2)) = (√‘𝑥))
97, 8syl 17 . . . 4 (𝑥𝐷 → (𝑥𝑐(1 / 2)) = (√‘𝑥))
109mpteq2ia 4668 . . 3 (𝑥𝐷 ↦ (𝑥𝑐(1 / 2))) = (𝑥𝐷 ↦ (√‘𝑥))
1110oveq2i 6560 . 2 (ℂ D (𝑥𝐷 ↦ (𝑥𝑐(1 / 2)))) = (ℂ D (𝑥𝐷 ↦ (√‘𝑥)))
12 1p0e1 11010 . . . . . . . . . . 11 (1 + 0) = 1
13 ax-1cn 9873 . . . . . . . . . . . 12 1 ∈ ℂ
14 2halves 11137 . . . . . . . . . . . 12 (1 ∈ ℂ → ((1 / 2) + (1 / 2)) = 1)
1513, 14ax-mp 5 . . . . . . . . . . 11 ((1 / 2) + (1 / 2)) = 1
1612, 15eqtr4i 2635 . . . . . . . . . 10 (1 + 0) = ((1 / 2) + (1 / 2))
17 0cn 9911 . . . . . . . . . . 11 0 ∈ ℂ
18 addsubeq4 10175 . . . . . . . . . . 11 (((1 ∈ ℂ ∧ 0 ∈ ℂ) ∧ ((1 / 2) ∈ ℂ ∧ (1 / 2) ∈ ℂ)) → ((1 + 0) = ((1 / 2) + (1 / 2)) ↔ ((1 / 2) − 1) = (0 − (1 / 2))))
1913, 17, 1, 1, 18mp4an 705 . . . . . . . . . 10 ((1 + 0) = ((1 / 2) + (1 / 2)) ↔ ((1 / 2) − 1) = (0 − (1 / 2)))
2016, 19mpbi 219 . . . . . . . . 9 ((1 / 2) − 1) = (0 − (1 / 2))
21 df-neg 10148 . . . . . . . . 9 -(1 / 2) = (0 − (1 / 2))
2220, 21eqtr4i 2635 . . . . . . . 8 ((1 / 2) − 1) = -(1 / 2)
2322oveq2i 6560 . . . . . . 7 (𝑥𝑐((1 / 2) − 1)) = (𝑥𝑐-(1 / 2))
242logdmn0 24186 . . . . . . . 8 (𝑥𝐷𝑥 ≠ 0)
251a1i 11 . . . . . . . 8 (𝑥𝐷 → (1 / 2) ∈ ℂ)
267, 24, 25cxpnegd 24261 . . . . . . 7 (𝑥𝐷 → (𝑥𝑐-(1 / 2)) = (1 / (𝑥𝑐(1 / 2))))
2723, 26syl5eq 2656 . . . . . 6 (𝑥𝐷 → (𝑥𝑐((1 / 2) − 1)) = (1 / (𝑥𝑐(1 / 2))))
289oveq2d 6565 . . . . . 6 (𝑥𝐷 → (1 / (𝑥𝑐(1 / 2))) = (1 / (√‘𝑥)))
2927, 28eqtrd 2644 . . . . 5 (𝑥𝐷 → (𝑥𝑐((1 / 2) − 1)) = (1 / (√‘𝑥)))
3029oveq2d 6565 . . . 4 (𝑥𝐷 → ((1 / 2) · (𝑥𝑐((1 / 2) − 1))) = ((1 / 2) · (1 / (√‘𝑥))))
31 1cnd 9935 . . . . . 6 (𝑥𝐷 → 1 ∈ ℂ)
32 2cnd 10970 . . . . . 6 (𝑥𝐷 → 2 ∈ ℂ)
337sqrtcld 14024 . . . . . 6 (𝑥𝐷 → (√‘𝑥) ∈ ℂ)
34 2ne0 10990 . . . . . . 7 2 ≠ 0
3534a1i 11 . . . . . 6 (𝑥𝐷 → 2 ≠ 0)
367adantr 480 . . . . . . . . . 10 ((𝑥𝐷 ∧ (√‘𝑥) = 0) → 𝑥 ∈ ℂ)
37 simpr 476 . . . . . . . . . 10 ((𝑥𝐷 ∧ (√‘𝑥) = 0) → (√‘𝑥) = 0)
3836, 37sqr00d 14028 . . . . . . . . 9 ((𝑥𝐷 ∧ (√‘𝑥) = 0) → 𝑥 = 0)
3938ex 449 . . . . . . . 8 (𝑥𝐷 → ((√‘𝑥) = 0 → 𝑥 = 0))
4039necon3d 2803 . . . . . . 7 (𝑥𝐷 → (𝑥 ≠ 0 → (√‘𝑥) ≠ 0))
4124, 40mpd 15 . . . . . 6 (𝑥𝐷 → (√‘𝑥) ≠ 0)
4231, 32, 31, 33, 35, 41divmuldivd 10721 . . . . 5 (𝑥𝐷 → ((1 / 2) · (1 / (√‘𝑥))) = ((1 · 1) / (2 · (√‘𝑥))))
43 1t1e1 11052 . . . . . 6 (1 · 1) = 1
4443oveq1i 6559 . . . . 5 ((1 · 1) / (2 · (√‘𝑥))) = (1 / (2 · (√‘𝑥)))
4542, 44syl6eq 2660 . . . 4 (𝑥𝐷 → ((1 / 2) · (1 / (√‘𝑥))) = (1 / (2 · (√‘𝑥))))
4630, 45eqtrd 2644 . . 3 (𝑥𝐷 → ((1 / 2) · (𝑥𝑐((1 / 2) − 1))) = (1 / (2 · (√‘𝑥))))
4746mpteq2ia 4668 . 2 (𝑥𝐷 ↦ ((1 / 2) · (𝑥𝑐((1 / 2) − 1)))) = (𝑥𝐷 ↦ (1 / (2 · (√‘𝑥))))
484, 11, 473eqtr3i 2640 1 (ℂ D (𝑥𝐷 ↦ (√‘𝑥))) = (𝑥𝐷 ↦ (1 / (2 · (√‘𝑥))))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 195   ∧ wa 383   = wceq 1475   ∈ wcel 1977   ≠ wne 2780   ∖ cdif 3537   ↦ cmpt 4643  ‘cfv 5804  (class class class)co 6549  ℂcc 9813  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820  -∞cmnf 9951   − cmin 10145  -cneg 10146   / cdiv 10563  2c2 10947  (,]cioc 12047  √csqrt 13821   D cdv 23433  ↑𝑐ccxp 24106 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265  df-ef 14637  df-sin 14639  df-cos 14640  df-tan 14641  df-pi 14642  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-haus 20929  df-cmp 21000  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-limc 23436  df-dv 23437  df-log 24107  df-cxp 24108 This theorem is referenced by:  dvasin  32666
 Copyright terms: Public domain W3C validator