MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bcxmas Structured version   Visualization version   GIF version

Theorem bcxmas 14406
Description: Parallel summation (Christmas Stocking) theorem for Pascal's Triangle. (Contributed by Paul Chapman, 18-May-2007.) (Revised by Mario Carneiro, 24-Apr-2014.)
Assertion
Ref Expression
bcxmas ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → (((𝑁 + 1) + 𝑀)C𝑀) = Σ𝑗 ∈ (0...𝑀)((𝑁 + 𝑗)C𝑗))
Distinct variable groups:   𝑗,𝑀   𝑗,𝑁

Proof of Theorem bcxmas
Dummy variables 𝑚 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bcxmaslem1 14405 . . . . 5 (𝑚 = 0 → (((𝑁 + 1) + 𝑚)C𝑚) = (((𝑁 + 1) + 0)C0))
2 oveq2 6557 . . . . . 6 (𝑚 = 0 → (0...𝑚) = (0...0))
32sumeq1d 14279 . . . . 5 (𝑚 = 0 → Σ𝑗 ∈ (0...𝑚)((𝑁 + 𝑗)C𝑗) = Σ𝑗 ∈ (0...0)((𝑁 + 𝑗)C𝑗))
41, 3eqeq12d 2625 . . . 4 (𝑚 = 0 → ((((𝑁 + 1) + 𝑚)C𝑚) = Σ𝑗 ∈ (0...𝑚)((𝑁 + 𝑗)C𝑗) ↔ (((𝑁 + 1) + 0)C0) = Σ𝑗 ∈ (0...0)((𝑁 + 𝑗)C𝑗)))
54imbi2d 329 . . 3 (𝑚 = 0 → ((𝑁 ∈ ℕ0 → (((𝑁 + 1) + 𝑚)C𝑚) = Σ𝑗 ∈ (0...𝑚)((𝑁 + 𝑗)C𝑗)) ↔ (𝑁 ∈ ℕ0 → (((𝑁 + 1) + 0)C0) = Σ𝑗 ∈ (0...0)((𝑁 + 𝑗)C𝑗))))
6 bcxmaslem1 14405 . . . . 5 (𝑚 = 𝑘 → (((𝑁 + 1) + 𝑚)C𝑚) = (((𝑁 + 1) + 𝑘)C𝑘))
7 oveq2 6557 . . . . . 6 (𝑚 = 𝑘 → (0...𝑚) = (0...𝑘))
87sumeq1d 14279 . . . . 5 (𝑚 = 𝑘 → Σ𝑗 ∈ (0...𝑚)((𝑁 + 𝑗)C𝑗) = Σ𝑗 ∈ (0...𝑘)((𝑁 + 𝑗)C𝑗))
96, 8eqeq12d 2625 . . . 4 (𝑚 = 𝑘 → ((((𝑁 + 1) + 𝑚)C𝑚) = Σ𝑗 ∈ (0...𝑚)((𝑁 + 𝑗)C𝑗) ↔ (((𝑁 + 1) + 𝑘)C𝑘) = Σ𝑗 ∈ (0...𝑘)((𝑁 + 𝑗)C𝑗)))
109imbi2d 329 . . 3 (𝑚 = 𝑘 → ((𝑁 ∈ ℕ0 → (((𝑁 + 1) + 𝑚)C𝑚) = Σ𝑗 ∈ (0...𝑚)((𝑁 + 𝑗)C𝑗)) ↔ (𝑁 ∈ ℕ0 → (((𝑁 + 1) + 𝑘)C𝑘) = Σ𝑗 ∈ (0...𝑘)((𝑁 + 𝑗)C𝑗))))
11 bcxmaslem1 14405 . . . . 5 (𝑚 = (𝑘 + 1) → (((𝑁 + 1) + 𝑚)C𝑚) = (((𝑁 + 1) + (𝑘 + 1))C(𝑘 + 1)))
12 oveq2 6557 . . . . . 6 (𝑚 = (𝑘 + 1) → (0...𝑚) = (0...(𝑘 + 1)))
1312sumeq1d 14279 . . . . 5 (𝑚 = (𝑘 + 1) → Σ𝑗 ∈ (0...𝑚)((𝑁 + 𝑗)C𝑗) = Σ𝑗 ∈ (0...(𝑘 + 1))((𝑁 + 𝑗)C𝑗))
1411, 13eqeq12d 2625 . . . 4 (𝑚 = (𝑘 + 1) → ((((𝑁 + 1) + 𝑚)C𝑚) = Σ𝑗 ∈ (0...𝑚)((𝑁 + 𝑗)C𝑗) ↔ (((𝑁 + 1) + (𝑘 + 1))C(𝑘 + 1)) = Σ𝑗 ∈ (0...(𝑘 + 1))((𝑁 + 𝑗)C𝑗)))
1514imbi2d 329 . . 3 (𝑚 = (𝑘 + 1) → ((𝑁 ∈ ℕ0 → (((𝑁 + 1) + 𝑚)C𝑚) = Σ𝑗 ∈ (0...𝑚)((𝑁 + 𝑗)C𝑗)) ↔ (𝑁 ∈ ℕ0 → (((𝑁 + 1) + (𝑘 + 1))C(𝑘 + 1)) = Σ𝑗 ∈ (0...(𝑘 + 1))((𝑁 + 𝑗)C𝑗))))
16 bcxmaslem1 14405 . . . . 5 (𝑚 = 𝑀 → (((𝑁 + 1) + 𝑚)C𝑚) = (((𝑁 + 1) + 𝑀)C𝑀))
17 oveq2 6557 . . . . . 6 (𝑚 = 𝑀 → (0...𝑚) = (0...𝑀))
1817sumeq1d 14279 . . . . 5 (𝑚 = 𝑀 → Σ𝑗 ∈ (0...𝑚)((𝑁 + 𝑗)C𝑗) = Σ𝑗 ∈ (0...𝑀)((𝑁 + 𝑗)C𝑗))
1916, 18eqeq12d 2625 . . . 4 (𝑚 = 𝑀 → ((((𝑁 + 1) + 𝑚)C𝑚) = Σ𝑗 ∈ (0...𝑚)((𝑁 + 𝑗)C𝑗) ↔ (((𝑁 + 1) + 𝑀)C𝑀) = Σ𝑗 ∈ (0...𝑀)((𝑁 + 𝑗)C𝑗)))
2019imbi2d 329 . . 3 (𝑚 = 𝑀 → ((𝑁 ∈ ℕ0 → (((𝑁 + 1) + 𝑚)C𝑚) = Σ𝑗 ∈ (0...𝑚)((𝑁 + 𝑗)C𝑗)) ↔ (𝑁 ∈ ℕ0 → (((𝑁 + 1) + 𝑀)C𝑀) = Σ𝑗 ∈ (0...𝑀)((𝑁 + 𝑗)C𝑗))))
21 0nn0 11184 . . . . 5 0 ∈ ℕ0
22 nn0addcl 11205 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ 0 ∈ ℕ0) → (𝑁 + 0) ∈ ℕ0)
23 bcn0 12959 . . . . . 6 ((𝑁 + 0) ∈ ℕ0 → ((𝑁 + 0)C0) = 1)
2422, 23syl 17 . . . . 5 ((𝑁 ∈ ℕ0 ∧ 0 ∈ ℕ0) → ((𝑁 + 0)C0) = 1)
2521, 24mpan2 703 . . . 4 (𝑁 ∈ ℕ0 → ((𝑁 + 0)C0) = 1)
26 0z 11265 . . . . 5 0 ∈ ℤ
27 1nn0 11185 . . . . . . 7 1 ∈ ℕ0
2825, 27syl6eqel 2696 . . . . . 6 (𝑁 ∈ ℕ0 → ((𝑁 + 0)C0) ∈ ℕ0)
2928nn0cnd 11230 . . . . 5 (𝑁 ∈ ℕ0 → ((𝑁 + 0)C0) ∈ ℂ)
30 bcxmaslem1 14405 . . . . . 6 (𝑗 = 0 → ((𝑁 + 𝑗)C𝑗) = ((𝑁 + 0)C0))
3130fsum1 14320 . . . . 5 ((0 ∈ ℤ ∧ ((𝑁 + 0)C0) ∈ ℂ) → Σ𝑗 ∈ (0...0)((𝑁 + 𝑗)C𝑗) = ((𝑁 + 0)C0))
3226, 29, 31sylancr 694 . . . 4 (𝑁 ∈ ℕ0 → Σ𝑗 ∈ (0...0)((𝑁 + 𝑗)C𝑗) = ((𝑁 + 0)C0))
33 peano2nn0 11210 . . . . . 6 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
34 nn0addcl 11205 . . . . . 6 (((𝑁 + 1) ∈ ℕ0 ∧ 0 ∈ ℕ0) → ((𝑁 + 1) + 0) ∈ ℕ0)
3533, 21, 34sylancl 693 . . . . 5 (𝑁 ∈ ℕ0 → ((𝑁 + 1) + 0) ∈ ℕ0)
36 bcn0 12959 . . . . 5 (((𝑁 + 1) + 0) ∈ ℕ0 → (((𝑁 + 1) + 0)C0) = 1)
3735, 36syl 17 . . . 4 (𝑁 ∈ ℕ0 → (((𝑁 + 1) + 0)C0) = 1)
3825, 32, 373eqtr4rd 2655 . . 3 (𝑁 ∈ ℕ0 → (((𝑁 + 1) + 0)C0) = Σ𝑗 ∈ (0...0)((𝑁 + 𝑗)C𝑗))
39 simpr 476 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
40 elnn0uz 11601 . . . . . . . . . . 11 (𝑘 ∈ ℕ0𝑘 ∈ (ℤ‘0))
4139, 40sylib 207 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → 𝑘 ∈ (ℤ‘0))
42 simpl 472 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → 𝑁 ∈ ℕ0)
43 elfznn0 12302 . . . . . . . . . . . . 13 (𝑗 ∈ (0...(𝑘 + 1)) → 𝑗 ∈ ℕ0)
44 nn0addcl 11205 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0𝑗 ∈ ℕ0) → (𝑁 + 𝑗) ∈ ℕ0)
4542, 43, 44syl2an 493 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...(𝑘 + 1))) → (𝑁 + 𝑗) ∈ ℕ0)
46 elfzelz 12213 . . . . . . . . . . . . 13 (𝑗 ∈ (0...(𝑘 + 1)) → 𝑗 ∈ ℤ)
4746adantl 481 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...(𝑘 + 1))) → 𝑗 ∈ ℤ)
48 bccl 12971 . . . . . . . . . . . 12 (((𝑁 + 𝑗) ∈ ℕ0𝑗 ∈ ℤ) → ((𝑁 + 𝑗)C𝑗) ∈ ℕ0)
4945, 47, 48syl2anc 691 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...(𝑘 + 1))) → ((𝑁 + 𝑗)C𝑗) ∈ ℕ0)
5049nn0cnd 11230 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...(𝑘 + 1))) → ((𝑁 + 𝑗)C𝑗) ∈ ℂ)
51 bcxmaslem1 14405 . . . . . . . . . 10 (𝑗 = (𝑘 + 1) → ((𝑁 + 𝑗)C𝑗) = ((𝑁 + (𝑘 + 1))C(𝑘 + 1)))
5241, 50, 51fsump1 14329 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → Σ𝑗 ∈ (0...(𝑘 + 1))((𝑁 + 𝑗)C𝑗) = (Σ𝑗 ∈ (0...𝑘)((𝑁 + 𝑗)C𝑗) + ((𝑁 + (𝑘 + 1))C(𝑘 + 1))))
53 nn0cn 11179 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
5453adantr 480 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → 𝑁 ∈ ℂ)
55 nn0cn 11179 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
5655adantl 481 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → 𝑘 ∈ ℂ)
57 1cnd 9935 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → 1 ∈ ℂ)
58 add32r 10134 . . . . . . . . . . . 12 ((𝑁 ∈ ℂ ∧ 𝑘 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑁 + (𝑘 + 1)) = ((𝑁 + 1) + 𝑘))
5954, 56, 57, 58syl3anc 1318 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑁 + (𝑘 + 1)) = ((𝑁 + 1) + 𝑘))
6059oveq1d 6564 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → ((𝑁 + (𝑘 + 1))C(𝑘 + 1)) = (((𝑁 + 1) + 𝑘)C(𝑘 + 1)))
6160oveq2d 6565 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (Σ𝑗 ∈ (0...𝑘)((𝑁 + 𝑗)C𝑗) + ((𝑁 + (𝑘 + 1))C(𝑘 + 1))) = (Σ𝑗 ∈ (0...𝑘)((𝑁 + 𝑗)C𝑗) + (((𝑁 + 1) + 𝑘)C(𝑘 + 1))))
6252, 61eqtrd 2644 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → Σ𝑗 ∈ (0...(𝑘 + 1))((𝑁 + 𝑗)C𝑗) = (Σ𝑗 ∈ (0...𝑘)((𝑁 + 𝑗)C𝑗) + (((𝑁 + 1) + 𝑘)C(𝑘 + 1))))
6362adantr 480 . . . . . . 7 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ (((𝑁 + 1) + 𝑘)C𝑘) = Σ𝑗 ∈ (0...𝑘)((𝑁 + 𝑗)C𝑗)) → Σ𝑗 ∈ (0...(𝑘 + 1))((𝑁 + 𝑗)C𝑗) = (Σ𝑗 ∈ (0...𝑘)((𝑁 + 𝑗)C𝑗) + (((𝑁 + 1) + 𝑘)C(𝑘 + 1))))
64 oveq1 6556 . . . . . . . 8 ((((𝑁 + 1) + 𝑘)C𝑘) = Σ𝑗 ∈ (0...𝑘)((𝑁 + 𝑗)C𝑗) → ((((𝑁 + 1) + 𝑘)C𝑘) + (((𝑁 + 1) + 𝑘)C(𝑘 + 1))) = (Σ𝑗 ∈ (0...𝑘)((𝑁 + 𝑗)C𝑗) + (((𝑁 + 1) + 𝑘)C(𝑘 + 1))))
6564adantl 481 . . . . . . 7 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ (((𝑁 + 1) + 𝑘)C𝑘) = Σ𝑗 ∈ (0...𝑘)((𝑁 + 𝑗)C𝑗)) → ((((𝑁 + 1) + 𝑘)C𝑘) + (((𝑁 + 1) + 𝑘)C(𝑘 + 1))) = (Σ𝑗 ∈ (0...𝑘)((𝑁 + 𝑗)C𝑗) + (((𝑁 + 1) + 𝑘)C(𝑘 + 1))))
66 ax-1cn 9873 . . . . . . . . . . . . 13 1 ∈ ℂ
67 pncan 10166 . . . . . . . . . . . . 13 ((𝑘 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑘 + 1) − 1) = 𝑘)
6856, 66, 67sylancl 693 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → ((𝑘 + 1) − 1) = 𝑘)
6968oveq2d 6565 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (((𝑁 + 1) + 𝑘)C((𝑘 + 1) − 1)) = (((𝑁 + 1) + 𝑘)C𝑘))
7069oveq2d 6565 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → ((((𝑁 + 1) + 𝑘)C(𝑘 + 1)) + (((𝑁 + 1) + 𝑘)C((𝑘 + 1) − 1))) = ((((𝑁 + 1) + 𝑘)C(𝑘 + 1)) + (((𝑁 + 1) + 𝑘)C𝑘)))
71 nn0addcl 11205 . . . . . . . . . . . 12 (((𝑁 + 1) ∈ ℕ0𝑘 ∈ ℕ0) → ((𝑁 + 1) + 𝑘) ∈ ℕ0)
7233, 71sylan 487 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → ((𝑁 + 1) + 𝑘) ∈ ℕ0)
73 nn0p1nn 11209 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ)
7473adantl 481 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑘 + 1) ∈ ℕ)
7574nnzd 11357 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑘 + 1) ∈ ℤ)
76 bcpasc 12970 . . . . . . . . . . 11 ((((𝑁 + 1) + 𝑘) ∈ ℕ0 ∧ (𝑘 + 1) ∈ ℤ) → ((((𝑁 + 1) + 𝑘)C(𝑘 + 1)) + (((𝑁 + 1) + 𝑘)C((𝑘 + 1) − 1))) = ((((𝑁 + 1) + 𝑘) + 1)C(𝑘 + 1)))
7772, 75, 76syl2anc 691 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → ((((𝑁 + 1) + 𝑘)C(𝑘 + 1)) + (((𝑁 + 1) + 𝑘)C((𝑘 + 1) − 1))) = ((((𝑁 + 1) + 𝑘) + 1)C(𝑘 + 1)))
7870, 77eqtr3d 2646 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → ((((𝑁 + 1) + 𝑘)C(𝑘 + 1)) + (((𝑁 + 1) + 𝑘)C𝑘)) = ((((𝑁 + 1) + 𝑘) + 1)C(𝑘 + 1)))
79 nn0p1nn 11209 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ)
80 nnnn0addcl 11200 . . . . . . . . . . . . . 14 (((𝑁 + 1) ∈ ℕ ∧ 𝑘 ∈ ℕ0) → ((𝑁 + 1) + 𝑘) ∈ ℕ)
8179, 80sylan 487 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → ((𝑁 + 1) + 𝑘) ∈ ℕ)
8281nnnn0d 11228 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → ((𝑁 + 1) + 𝑘) ∈ ℕ0)
83 bccl 12971 . . . . . . . . . . . 12 ((((𝑁 + 1) + 𝑘) ∈ ℕ0 ∧ (𝑘 + 1) ∈ ℤ) → (((𝑁 + 1) + 𝑘)C(𝑘 + 1)) ∈ ℕ0)
8482, 75, 83syl2anc 691 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (((𝑁 + 1) + 𝑘)C(𝑘 + 1)) ∈ ℕ0)
8584nn0cnd 11230 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (((𝑁 + 1) + 𝑘)C(𝑘 + 1)) ∈ ℂ)
86 nn0z 11277 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ0𝑘 ∈ ℤ)
8786adantl 481 . . . . . . . . . . . . 13 (((𝑁 + 1) ∈ ℕ0𝑘 ∈ ℕ0) → 𝑘 ∈ ℤ)
88 bccl 12971 . . . . . . . . . . . . 13 ((((𝑁 + 1) + 𝑘) ∈ ℕ0𝑘 ∈ ℤ) → (((𝑁 + 1) + 𝑘)C𝑘) ∈ ℕ0)
8971, 87, 88syl2anc 691 . . . . . . . . . . . 12 (((𝑁 + 1) ∈ ℕ0𝑘 ∈ ℕ0) → (((𝑁 + 1) + 𝑘)C𝑘) ∈ ℕ0)
9033, 89sylan 487 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (((𝑁 + 1) + 𝑘)C𝑘) ∈ ℕ0)
9190nn0cnd 11230 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (((𝑁 + 1) + 𝑘)C𝑘) ∈ ℂ)
9285, 91addcomd 10117 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → ((((𝑁 + 1) + 𝑘)C(𝑘 + 1)) + (((𝑁 + 1) + 𝑘)C𝑘)) = ((((𝑁 + 1) + 𝑘)C𝑘) + (((𝑁 + 1) + 𝑘)C(𝑘 + 1))))
93 peano2cn 10087 . . . . . . . . . . . . 13 (𝑁 ∈ ℂ → (𝑁 + 1) ∈ ℂ)
9453, 93syl 17 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℂ)
9594adantr 480 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑁 + 1) ∈ ℂ)
9695, 56, 57addassd 9941 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (((𝑁 + 1) + 𝑘) + 1) = ((𝑁 + 1) + (𝑘 + 1)))
9796oveq1d 6564 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → ((((𝑁 + 1) + 𝑘) + 1)C(𝑘 + 1)) = (((𝑁 + 1) + (𝑘 + 1))C(𝑘 + 1)))
9878, 92, 973eqtr3d 2652 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → ((((𝑁 + 1) + 𝑘)C𝑘) + (((𝑁 + 1) + 𝑘)C(𝑘 + 1))) = (((𝑁 + 1) + (𝑘 + 1))C(𝑘 + 1)))
9998adantr 480 . . . . . . 7 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ (((𝑁 + 1) + 𝑘)C𝑘) = Σ𝑗 ∈ (0...𝑘)((𝑁 + 𝑗)C𝑗)) → ((((𝑁 + 1) + 𝑘)C𝑘) + (((𝑁 + 1) + 𝑘)C(𝑘 + 1))) = (((𝑁 + 1) + (𝑘 + 1))C(𝑘 + 1)))
10063, 65, 993eqtr2rd 2651 . . . . . 6 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ (((𝑁 + 1) + 𝑘)C𝑘) = Σ𝑗 ∈ (0...𝑘)((𝑁 + 𝑗)C𝑗)) → (((𝑁 + 1) + (𝑘 + 1))C(𝑘 + 1)) = Σ𝑗 ∈ (0...(𝑘 + 1))((𝑁 + 𝑗)C𝑗))
101100ex 449 . . . . 5 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → ((((𝑁 + 1) + 𝑘)C𝑘) = Σ𝑗 ∈ (0...𝑘)((𝑁 + 𝑗)C𝑗) → (((𝑁 + 1) + (𝑘 + 1))C(𝑘 + 1)) = Σ𝑗 ∈ (0...(𝑘 + 1))((𝑁 + 𝑗)C𝑗)))
102101expcom 450 . . . 4 (𝑘 ∈ ℕ0 → (𝑁 ∈ ℕ0 → ((((𝑁 + 1) + 𝑘)C𝑘) = Σ𝑗 ∈ (0...𝑘)((𝑁 + 𝑗)C𝑗) → (((𝑁 + 1) + (𝑘 + 1))C(𝑘 + 1)) = Σ𝑗 ∈ (0...(𝑘 + 1))((𝑁 + 𝑗)C𝑗))))
103102a2d 29 . . 3 (𝑘 ∈ ℕ0 → ((𝑁 ∈ ℕ0 → (((𝑁 + 1) + 𝑘)C𝑘) = Σ𝑗 ∈ (0...𝑘)((𝑁 + 𝑗)C𝑗)) → (𝑁 ∈ ℕ0 → (((𝑁 + 1) + (𝑘 + 1))C(𝑘 + 1)) = Σ𝑗 ∈ (0...(𝑘 + 1))((𝑁 + 𝑗)C𝑗))))
1045, 10, 15, 20, 38, 103nn0ind 11348 . 2 (𝑀 ∈ ℕ0 → (𝑁 ∈ ℕ0 → (((𝑁 + 1) + 𝑀)C𝑀) = Σ𝑗 ∈ (0...𝑀)((𝑁 + 𝑗)C𝑗)))
105104impcom 445 1 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → (((𝑁 + 1) + 𝑀)C𝑀) = Σ𝑗 ∈ (0...𝑀)((𝑁 + 𝑗)C𝑗))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  cfv 5804  (class class class)co 6549  cc 9813  0cc0 9815  1c1 9816   + caddc 9818  cmin 10145  cn 10897  0cn0 11169  cz 11254  cuz 11563  ...cfz 12197  Ccbc 12951  Σcsu 14264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265
This theorem is referenced by:  arisum  14431
  Copyright terms: Public domain W3C validator