Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ztprmneprm Structured version   Visualization version   GIF version

Theorem ztprmneprm 41918
Description: A prime is not an integer multiple of another prime. (Contributed by AV, 23-May-2019.)
Assertion
Ref Expression
ztprmneprm ((𝑍 ∈ ℤ ∧ 𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((𝑍 · 𝐴) = 𝐵𝐴 = 𝐵))

Proof of Theorem ztprmneprm
StepHypRef Expression
1 elznn0nn 11268 . . 3 (𝑍 ∈ ℤ ↔ (𝑍 ∈ ℕ0 ∨ (𝑍 ∈ ℝ ∧ -𝑍 ∈ ℕ)))
2 elnn0 11171 . . . . 5 (𝑍 ∈ ℕ0 ↔ (𝑍 ∈ ℕ ∨ 𝑍 = 0))
3 elnn1uz2 11641 . . . . . . 7 (𝑍 ∈ ℕ ↔ (𝑍 = 1 ∨ 𝑍 ∈ (ℤ‘2)))
4 oveq1 6556 . . . . . . . . . . . 12 (𝑍 = 1 → (𝑍 · 𝐴) = (1 · 𝐴))
54adantr 480 . . . . . . . . . . 11 ((𝑍 = 1 ∧ (𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ)) → (𝑍 · 𝐴) = (1 · 𝐴))
65eqeq1d 2612 . . . . . . . . . 10 ((𝑍 = 1 ∧ (𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ)) → ((𝑍 · 𝐴) = 𝐵 ↔ (1 · 𝐴) = 𝐵))
7 prmz 15227 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℙ → 𝐴 ∈ ℤ)
87zcnd 11359 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℙ → 𝐴 ∈ ℂ)
98mulid2d 9937 . . . . . . . . . . . . . 14 (𝐴 ∈ ℙ → (1 · 𝐴) = 𝐴)
109adantr 480 . . . . . . . . . . . . 13 ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → (1 · 𝐴) = 𝐴)
1110eqeq1d 2612 . . . . . . . . . . . 12 ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((1 · 𝐴) = 𝐵𝐴 = 𝐵))
1211biimpd 218 . . . . . . . . . . 11 ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((1 · 𝐴) = 𝐵𝐴 = 𝐵))
1312adantl 481 . . . . . . . . . 10 ((𝑍 = 1 ∧ (𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ)) → ((1 · 𝐴) = 𝐵𝐴 = 𝐵))
146, 13sylbid 229 . . . . . . . . 9 ((𝑍 = 1 ∧ (𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ)) → ((𝑍 · 𝐴) = 𝐵𝐴 = 𝐵))
1514ex 449 . . . . . . . 8 (𝑍 = 1 → ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((𝑍 · 𝐴) = 𝐵𝐴 = 𝐵)))
16 prmuz2 15246 . . . . . . . . . . . 12 (𝐴 ∈ ℙ → 𝐴 ∈ (ℤ‘2))
1716adantr 480 . . . . . . . . . . 11 ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → 𝐴 ∈ (ℤ‘2))
18 nprm 15239 . . . . . . . . . . 11 ((𝑍 ∈ (ℤ‘2) ∧ 𝐴 ∈ (ℤ‘2)) → ¬ (𝑍 · 𝐴) ∈ ℙ)
1917, 18sylan2 490 . . . . . . . . . 10 ((𝑍 ∈ (ℤ‘2) ∧ (𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ)) → ¬ (𝑍 · 𝐴) ∈ ℙ)
20 eleq1 2676 . . . . . . . . . . . . 13 ((𝑍 · 𝐴) = 𝐵 → ((𝑍 · 𝐴) ∈ ℙ ↔ 𝐵 ∈ ℙ))
2120notbid 307 . . . . . . . . . . . 12 ((𝑍 · 𝐴) = 𝐵 → (¬ (𝑍 · 𝐴) ∈ ℙ ↔ ¬ 𝐵 ∈ ℙ))
22 pm2.24 120 . . . . . . . . . . . . . . 15 (𝐵 ∈ ℙ → (¬ 𝐵 ∈ ℙ → 𝐴 = 𝐵))
2322adantl 481 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → (¬ 𝐵 ∈ ℙ → 𝐴 = 𝐵))
2423adantl 481 . . . . . . . . . . . . 13 ((𝑍 ∈ (ℤ‘2) ∧ (𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ)) → (¬ 𝐵 ∈ ℙ → 𝐴 = 𝐵))
2524com12 32 . . . . . . . . . . . 12 𝐵 ∈ ℙ → ((𝑍 ∈ (ℤ‘2) ∧ (𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ)) → 𝐴 = 𝐵))
2621, 25syl6bi 242 . . . . . . . . . . 11 ((𝑍 · 𝐴) = 𝐵 → (¬ (𝑍 · 𝐴) ∈ ℙ → ((𝑍 ∈ (ℤ‘2) ∧ (𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ)) → 𝐴 = 𝐵)))
2726com3l 87 . . . . . . . . . 10 (¬ (𝑍 · 𝐴) ∈ ℙ → ((𝑍 ∈ (ℤ‘2) ∧ (𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ)) → ((𝑍 · 𝐴) = 𝐵𝐴 = 𝐵)))
2819, 27mpcom 37 . . . . . . . . 9 ((𝑍 ∈ (ℤ‘2) ∧ (𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ)) → ((𝑍 · 𝐴) = 𝐵𝐴 = 𝐵))
2928ex 449 . . . . . . . 8 (𝑍 ∈ (ℤ‘2) → ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((𝑍 · 𝐴) = 𝐵𝐴 = 𝐵)))
3015, 29jaoi 393 . . . . . . 7 ((𝑍 = 1 ∨ 𝑍 ∈ (ℤ‘2)) → ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((𝑍 · 𝐴) = 𝐵𝐴 = 𝐵)))
313, 30sylbi 206 . . . . . 6 (𝑍 ∈ ℕ → ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((𝑍 · 𝐴) = 𝐵𝐴 = 𝐵)))
32 oveq1 6556 . . . . . . . . 9 (𝑍 = 0 → (𝑍 · 𝐴) = (0 · 𝐴))
3332eqeq1d 2612 . . . . . . . 8 (𝑍 = 0 → ((𝑍 · 𝐴) = 𝐵 ↔ (0 · 𝐴) = 𝐵))
34 prmnn 15226 . . . . . . . . . . . . . 14 (𝐴 ∈ ℙ → 𝐴 ∈ ℕ)
3534nnred 10912 . . . . . . . . . . . . 13 (𝐴 ∈ ℙ → 𝐴 ∈ ℝ)
36 mul02lem2 10092 . . . . . . . . . . . . 13 (𝐴 ∈ ℝ → (0 · 𝐴) = 0)
3735, 36syl 17 . . . . . . . . . . . 12 (𝐴 ∈ ℙ → (0 · 𝐴) = 0)
3837adantr 480 . . . . . . . . . . 11 ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → (0 · 𝐴) = 0)
3938eqeq1d 2612 . . . . . . . . . 10 ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((0 · 𝐴) = 𝐵 ↔ 0 = 𝐵))
40 prmnn 15226 . . . . . . . . . . . 12 (𝐵 ∈ ℙ → 𝐵 ∈ ℕ)
41 elnnne0 11183 . . . . . . . . . . . . 13 (𝐵 ∈ ℕ ↔ (𝐵 ∈ ℕ0𝐵 ≠ 0))
42 eqneqall 2793 . . . . . . . . . . . . . . . 16 (𝐵 = 0 → (𝐵 ≠ 0 → 𝐴 = 𝐵))
4342eqcoms 2618 . . . . . . . . . . . . . . 15 (0 = 𝐵 → (𝐵 ≠ 0 → 𝐴 = 𝐵))
4443com12 32 . . . . . . . . . . . . . 14 (𝐵 ≠ 0 → (0 = 𝐵𝐴 = 𝐵))
4544adantl 481 . . . . . . . . . . . . 13 ((𝐵 ∈ ℕ0𝐵 ≠ 0) → (0 = 𝐵𝐴 = 𝐵))
4641, 45sylbi 206 . . . . . . . . . . . 12 (𝐵 ∈ ℕ → (0 = 𝐵𝐴 = 𝐵))
4740, 46syl 17 . . . . . . . . . . 11 (𝐵 ∈ ℙ → (0 = 𝐵𝐴 = 𝐵))
4847adantl 481 . . . . . . . . . 10 ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → (0 = 𝐵𝐴 = 𝐵))
4939, 48sylbid 229 . . . . . . . . 9 ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((0 · 𝐴) = 𝐵𝐴 = 𝐵))
5049com12 32 . . . . . . . 8 ((0 · 𝐴) = 𝐵 → ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → 𝐴 = 𝐵))
5133, 50syl6bi 242 . . . . . . 7 (𝑍 = 0 → ((𝑍 · 𝐴) = 𝐵 → ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → 𝐴 = 𝐵)))
5251com23 84 . . . . . 6 (𝑍 = 0 → ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((𝑍 · 𝐴) = 𝐵𝐴 = 𝐵)))
5331, 52jaoi 393 . . . . 5 ((𝑍 ∈ ℕ ∨ 𝑍 = 0) → ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((𝑍 · 𝐴) = 𝐵𝐴 = 𝐵)))
542, 53sylbi 206 . . . 4 (𝑍 ∈ ℕ0 → ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((𝑍 · 𝐴) = 𝐵𝐴 = 𝐵)))
55 elnnz 11264 . . . . . 6 (-𝑍 ∈ ℕ ↔ (-𝑍 ∈ ℤ ∧ 0 < -𝑍))
56 lt0neg1 10413 . . . . . . . 8 (𝑍 ∈ ℝ → (𝑍 < 0 ↔ 0 < -𝑍))
5734nngt0d 10941 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℙ → 0 < 𝐴)
5857adantr 480 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → 0 < 𝐴)
59 simpr 476 . . . . . . . . . . . . . . 15 ((𝑍 ∈ ℝ ∧ 𝑍 < 0) → 𝑍 < 0)
6058, 59anim12ci 589 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) ∧ (𝑍 ∈ ℝ ∧ 𝑍 < 0)) → (𝑍 < 0 ∧ 0 < 𝐴))
6160orcd 406 . . . . . . . . . . . . 13 (((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) ∧ (𝑍 ∈ ℝ ∧ 𝑍 < 0)) → ((𝑍 < 0 ∧ 0 < 𝐴) ∨ (0 < 𝑍𝐴 < 0)))
62 simprl 790 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) ∧ (𝑍 ∈ ℝ ∧ 𝑍 < 0)) → 𝑍 ∈ ℝ)
6335adantr 480 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → 𝐴 ∈ ℝ)
6463adantr 480 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) ∧ (𝑍 ∈ ℝ ∧ 𝑍 < 0)) → 𝐴 ∈ ℝ)
6562, 64mul2lt0bi 11812 . . . . . . . . . . . . 13 (((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) ∧ (𝑍 ∈ ℝ ∧ 𝑍 < 0)) → ((𝑍 · 𝐴) < 0 ↔ ((𝑍 < 0 ∧ 0 < 𝐴) ∨ (0 < 𝑍𝐴 < 0))))
6661, 65mpbird 246 . . . . . . . . . . . 12 (((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) ∧ (𝑍 ∈ ℝ ∧ 𝑍 < 0)) → (𝑍 · 𝐴) < 0)
6766ex 449 . . . . . . . . . . 11 ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((𝑍 ∈ ℝ ∧ 𝑍 < 0) → (𝑍 · 𝐴) < 0))
68 breq1 4586 . . . . . . . . . . . . . . 15 ((𝑍 · 𝐴) = 𝐵 → ((𝑍 · 𝐴) < 0 ↔ 𝐵 < 0))
6968adantl 481 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) ∧ (𝑍 · 𝐴) = 𝐵) → ((𝑍 · 𝐴) < 0 ↔ 𝐵 < 0))
70 nnnn0 11176 . . . . . . . . . . . . . . . . . 18 (𝐵 ∈ ℕ → 𝐵 ∈ ℕ0)
71 nn0nlt0 11196 . . . . . . . . . . . . . . . . . . 19 (𝐵 ∈ ℕ0 → ¬ 𝐵 < 0)
7271pm2.21d 117 . . . . . . . . . . . . . . . . . 18 (𝐵 ∈ ℕ0 → (𝐵 < 0 → 𝐴 = 𝐵))
7370, 72syl 17 . . . . . . . . . . . . . . . . 17 (𝐵 ∈ ℕ → (𝐵 < 0 → 𝐴 = 𝐵))
7440, 73syl 17 . . . . . . . . . . . . . . . 16 (𝐵 ∈ ℙ → (𝐵 < 0 → 𝐴 = 𝐵))
7574adantl 481 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → (𝐵 < 0 → 𝐴 = 𝐵))
7675adantr 480 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) ∧ (𝑍 · 𝐴) = 𝐵) → (𝐵 < 0 → 𝐴 = 𝐵))
7769, 76sylbid 229 . . . . . . . . . . . . 13 (((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) ∧ (𝑍 · 𝐴) = 𝐵) → ((𝑍 · 𝐴) < 0 → 𝐴 = 𝐵))
7877ex 449 . . . . . . . . . . . 12 ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((𝑍 · 𝐴) = 𝐵 → ((𝑍 · 𝐴) < 0 → 𝐴 = 𝐵)))
7978com23 84 . . . . . . . . . . 11 ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((𝑍 · 𝐴) < 0 → ((𝑍 · 𝐴) = 𝐵𝐴 = 𝐵)))
8067, 79syld 46 . . . . . . . . . 10 ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((𝑍 ∈ ℝ ∧ 𝑍 < 0) → ((𝑍 · 𝐴) = 𝐵𝐴 = 𝐵)))
8180com12 32 . . . . . . . . 9 ((𝑍 ∈ ℝ ∧ 𝑍 < 0) → ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((𝑍 · 𝐴) = 𝐵𝐴 = 𝐵)))
8281ex 449 . . . . . . . 8 (𝑍 ∈ ℝ → (𝑍 < 0 → ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((𝑍 · 𝐴) = 𝐵𝐴 = 𝐵))))
8356, 82sylbird 249 . . . . . . 7 (𝑍 ∈ ℝ → (0 < -𝑍 → ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((𝑍 · 𝐴) = 𝐵𝐴 = 𝐵))))
8483adantld 482 . . . . . 6 (𝑍 ∈ ℝ → ((-𝑍 ∈ ℤ ∧ 0 < -𝑍) → ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((𝑍 · 𝐴) = 𝐵𝐴 = 𝐵))))
8555, 84syl5bi 231 . . . . 5 (𝑍 ∈ ℝ → (-𝑍 ∈ ℕ → ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((𝑍 · 𝐴) = 𝐵𝐴 = 𝐵))))
8685imp 444 . . . 4 ((𝑍 ∈ ℝ ∧ -𝑍 ∈ ℕ) → ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((𝑍 · 𝐴) = 𝐵𝐴 = 𝐵)))
8754, 86jaoi 393 . . 3 ((𝑍 ∈ ℕ0 ∨ (𝑍 ∈ ℝ ∧ -𝑍 ∈ ℕ)) → ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((𝑍 · 𝐴) = 𝐵𝐴 = 𝐵)))
881, 87sylbi 206 . 2 (𝑍 ∈ ℤ → ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((𝑍 · 𝐴) = 𝐵𝐴 = 𝐵)))
89883impib 1254 1 ((𝑍 ∈ ℤ ∧ 𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((𝑍 · 𝐴) = 𝐵𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780   class class class wbr 4583  cfv 5804  (class class class)co 6549  cr 9814  0cc0 9815  1c1 9816   · cmul 9820   < clt 9953  -cneg 10146  cn 10897  2c2 10947  0cn0 11169  cz 11254  cuz 11563  cprime 15223
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-dvds 14822  df-prm 15224
This theorem is referenced by:  zlmodzxznm  42080
  Copyright terms: Public domain W3C validator