Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xpsxmet | Structured version Visualization version GIF version |
Description: A product metric of extended metrics is an extended metric. (Contributed by Mario Carneiro, 21-Aug-2015.) |
Ref | Expression |
---|---|
xpsds.t | ⊢ 𝑇 = (𝑅 ×s 𝑆) |
xpsds.x | ⊢ 𝑋 = (Base‘𝑅) |
xpsds.y | ⊢ 𝑌 = (Base‘𝑆) |
xpsds.1 | ⊢ (𝜑 → 𝑅 ∈ 𝑉) |
xpsds.2 | ⊢ (𝜑 → 𝑆 ∈ 𝑊) |
xpsds.p | ⊢ 𝑃 = (dist‘𝑇) |
xpsds.m | ⊢ 𝑀 = ((dist‘𝑅) ↾ (𝑋 × 𝑋)) |
xpsds.n | ⊢ 𝑁 = ((dist‘𝑆) ↾ (𝑌 × 𝑌)) |
xpsds.3 | ⊢ (𝜑 → 𝑀 ∈ (∞Met‘𝑋)) |
xpsds.4 | ⊢ (𝜑 → 𝑁 ∈ (∞Met‘𝑌)) |
Ref | Expression |
---|---|
xpsxmet | ⊢ (𝜑 → 𝑃 ∈ (∞Met‘(𝑋 × 𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpsds.t | . . 3 ⊢ 𝑇 = (𝑅 ×s 𝑆) | |
2 | xpsds.x | . . 3 ⊢ 𝑋 = (Base‘𝑅) | |
3 | xpsds.y | . . 3 ⊢ 𝑌 = (Base‘𝑆) | |
4 | xpsds.1 | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝑉) | |
5 | xpsds.2 | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝑊) | |
6 | eqid 2610 | . . 3 ⊢ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ ◡({𝑥} +𝑐 {𝑦})) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ ◡({𝑥} +𝑐 {𝑦})) | |
7 | eqid 2610 | . . 3 ⊢ (Scalar‘𝑅) = (Scalar‘𝑅) | |
8 | eqid 2610 | . . 3 ⊢ ((Scalar‘𝑅)Xs◡({𝑅} +𝑐 {𝑆})) = ((Scalar‘𝑅)Xs◡({𝑅} +𝑐 {𝑆})) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | xpsval 16055 | . 2 ⊢ (𝜑 → 𝑇 = (◡(𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ ◡({𝑥} +𝑐 {𝑦})) “s ((Scalar‘𝑅)Xs◡({𝑅} +𝑐 {𝑆})))) |
10 | 1, 2, 3, 4, 5, 6, 7, 8 | xpslem 16056 | . 2 ⊢ (𝜑 → ran (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ ◡({𝑥} +𝑐 {𝑦})) = (Base‘((Scalar‘𝑅)Xs◡({𝑅} +𝑐 {𝑆})))) |
11 | 6 | xpsff1o2 16054 | . . 3 ⊢ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ ◡({𝑥} +𝑐 {𝑦})):(𝑋 × 𝑌)–1-1-onto→ran (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ ◡({𝑥} +𝑐 {𝑦})) |
12 | f1ocnv 6062 | . . 3 ⊢ ((𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ ◡({𝑥} +𝑐 {𝑦})):(𝑋 × 𝑌)–1-1-onto→ran (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ ◡({𝑥} +𝑐 {𝑦})) → ◡(𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ ◡({𝑥} +𝑐 {𝑦})):ran (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ ◡({𝑥} +𝑐 {𝑦}))–1-1-onto→(𝑋 × 𝑌)) | |
13 | 11, 12 | mp1i 13 | . 2 ⊢ (𝜑 → ◡(𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ ◡({𝑥} +𝑐 {𝑦})):ran (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ ◡({𝑥} +𝑐 {𝑦}))–1-1-onto→(𝑋 × 𝑌)) |
14 | ovex 6577 | . . 3 ⊢ ((Scalar‘𝑅)Xs◡({𝑅} +𝑐 {𝑆})) ∈ V | |
15 | 14 | a1i 11 | . 2 ⊢ (𝜑 → ((Scalar‘𝑅)Xs◡({𝑅} +𝑐 {𝑆})) ∈ V) |
16 | eqid 2610 | . 2 ⊢ ((dist‘((Scalar‘𝑅)Xs◡({𝑅} +𝑐 {𝑆}))) ↾ (ran (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ ◡({𝑥} +𝑐 {𝑦})) × ran (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ ◡({𝑥} +𝑐 {𝑦})))) = ((dist‘((Scalar‘𝑅)Xs◡({𝑅} +𝑐 {𝑆}))) ↾ (ran (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ ◡({𝑥} +𝑐 {𝑦})) × ran (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ ◡({𝑥} +𝑐 {𝑦})))) | |
17 | xpsds.p | . 2 ⊢ 𝑃 = (dist‘𝑇) | |
18 | xpsds.m | . . . 4 ⊢ 𝑀 = ((dist‘𝑅) ↾ (𝑋 × 𝑋)) | |
19 | xpsds.n | . . . 4 ⊢ 𝑁 = ((dist‘𝑆) ↾ (𝑌 × 𝑌)) | |
20 | xpsds.3 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ (∞Met‘𝑋)) | |
21 | xpsds.4 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ (∞Met‘𝑌)) | |
22 | 1, 2, 3, 4, 5, 17, 18, 19, 20, 21 | xpsxmetlem 21994 | . . 3 ⊢ (𝜑 → (dist‘((Scalar‘𝑅)Xs◡({𝑅} +𝑐 {𝑆}))) ∈ (∞Met‘ran (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ ◡({𝑥} +𝑐 {𝑦})))) |
23 | ssid 3587 | . . 3 ⊢ ran (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ ◡({𝑥} +𝑐 {𝑦})) ⊆ ran (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ ◡({𝑥} +𝑐 {𝑦})) | |
24 | xmetres2 21976 | . . 3 ⊢ (((dist‘((Scalar‘𝑅)Xs◡({𝑅} +𝑐 {𝑆}))) ∈ (∞Met‘ran (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ ◡({𝑥} +𝑐 {𝑦}))) ∧ ran (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ ◡({𝑥} +𝑐 {𝑦})) ⊆ ran (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ ◡({𝑥} +𝑐 {𝑦}))) → ((dist‘((Scalar‘𝑅)Xs◡({𝑅} +𝑐 {𝑆}))) ↾ (ran (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ ◡({𝑥} +𝑐 {𝑦})) × ran (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ ◡({𝑥} +𝑐 {𝑦})))) ∈ (∞Met‘ran (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ ◡({𝑥} +𝑐 {𝑦})))) | |
25 | 22, 23, 24 | sylancl 693 | . 2 ⊢ (𝜑 → ((dist‘((Scalar‘𝑅)Xs◡({𝑅} +𝑐 {𝑆}))) ↾ (ran (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ ◡({𝑥} +𝑐 {𝑦})) × ran (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ ◡({𝑥} +𝑐 {𝑦})))) ∈ (∞Met‘ran (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ ◡({𝑥} +𝑐 {𝑦})))) |
26 | 9, 10, 13, 15, 16, 17, 25 | imasf1oxmet 21990 | 1 ⊢ (𝜑 → 𝑃 ∈ (∞Met‘(𝑋 × 𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1475 ∈ wcel 1977 Vcvv 3173 ⊆ wss 3540 {csn 4125 × cxp 5036 ◡ccnv 5037 ran crn 5039 ↾ cres 5040 –1-1-onto→wf1o 5803 ‘cfv 5804 (class class class)co 6549 ↦ cmpt2 6551 +𝑐 ccda 8872 Basecbs 15695 Scalarcsca 15771 distcds 15777 Xscprds 15929 ×s cxps 15989 ∞Metcxmt 19552 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-inf2 8421 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 ax-pre-sup 9893 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-int 4411 df-iun 4457 df-iin 4458 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-se 4998 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-isom 5813 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-of 6795 df-om 6958 df-1st 7059 df-2nd 7060 df-supp 7183 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-1o 7447 df-2o 7448 df-oadd 7451 df-er 7629 df-map 7746 df-ixp 7795 df-en 7842 df-dom 7843 df-sdom 7844 df-fin 7845 df-fsupp 8159 df-sup 8231 df-inf 8232 df-oi 8298 df-card 8648 df-cda 8873 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-div 10564 df-nn 10898 df-2 10956 df-3 10957 df-4 10958 df-5 10959 df-6 10960 df-7 10961 df-8 10962 df-9 10963 df-n0 11170 df-z 11255 df-dec 11370 df-uz 11564 df-rp 11709 df-xneg 11822 df-xadd 11823 df-xmul 11824 df-icc 12053 df-fz 12198 df-fzo 12335 df-seq 12664 df-hash 12980 df-struct 15697 df-ndx 15698 df-slot 15699 df-base 15700 df-sets 15701 df-ress 15702 df-plusg 15781 df-mulr 15782 df-sca 15784 df-vsca 15785 df-ip 15786 df-tset 15787 df-ple 15788 df-ds 15791 df-hom 15793 df-cco 15794 df-0g 15925 df-gsum 15926 df-prds 15931 df-xrs 15985 df-imas 15991 df-xps 15993 df-mre 16069 df-mrc 16070 df-acs 16072 df-mgm 17065 df-sgrp 17107 df-mnd 17118 df-submnd 17159 df-mulg 17364 df-cntz 17573 df-cmn 18018 df-xmet 19560 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |