MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpsval Structured version   Visualization version   GIF version

Theorem xpsval 16055
Description: Value of the binary structure product function. (Contributed by Mario Carneiro, 14-Aug-2015.)
Hypotheses
Ref Expression
xpsval.t 𝑇 = (𝑅 ×s 𝑆)
xpsval.x 𝑋 = (Base‘𝑅)
xpsval.y 𝑌 = (Base‘𝑆)
xpsval.1 (𝜑𝑅𝑉)
xpsval.2 (𝜑𝑆𝑊)
xpsval.f 𝐹 = (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))
xpsval.k 𝐺 = (Scalar‘𝑅)
xpsval.u 𝑈 = (𝐺Xs({𝑅} +𝑐 {𝑆}))
Assertion
Ref Expression
xpsval (𝜑𝑇 = (𝐹s 𝑈))
Distinct variable groups:   𝑥,𝑦   𝑥,𝑊   𝑥,𝑋,𝑦   𝑥,𝑅   𝑥,𝑌,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝑅(𝑦)   𝑆(𝑥,𝑦)   𝑇(𝑥,𝑦)   𝑈(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑦)

Proof of Theorem xpsval
Dummy variables 𝑠 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpsval.t . 2 𝑇 = (𝑅 ×s 𝑆)
2 xpsval.1 . . . 4 (𝜑𝑅𝑉)
3 elex 3185 . . . 4 (𝑅𝑉𝑅 ∈ V)
42, 3syl 17 . . 3 (𝜑𝑅 ∈ V)
5 xpsval.2 . . . 4 (𝜑𝑆𝑊)
6 elex 3185 . . . 4 (𝑆𝑊𝑆 ∈ V)
75, 6syl 17 . . 3 (𝜑𝑆 ∈ V)
8 fveq2 6103 . . . . . . . . 9 (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅))
9 xpsval.x . . . . . . . . 9 𝑋 = (Base‘𝑅)
108, 9syl6eqr 2662 . . . . . . . 8 (𝑟 = 𝑅 → (Base‘𝑟) = 𝑋)
11 fveq2 6103 . . . . . . . . 9 (𝑠 = 𝑆 → (Base‘𝑠) = (Base‘𝑆))
12 xpsval.y . . . . . . . . 9 𝑌 = (Base‘𝑆)
1311, 12syl6eqr 2662 . . . . . . . 8 (𝑠 = 𝑆 → (Base‘𝑠) = 𝑌)
14 mpt2eq12 6613 . . . . . . . 8 (((Base‘𝑟) = 𝑋 ∧ (Base‘𝑠) = 𝑌) → (𝑥 ∈ (Base‘𝑟), 𝑦 ∈ (Base‘𝑠) ↦ ({𝑥} +𝑐 {𝑦})) = (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦})))
1510, 13, 14syl2an 493 . . . . . . 7 ((𝑟 = 𝑅𝑠 = 𝑆) → (𝑥 ∈ (Base‘𝑟), 𝑦 ∈ (Base‘𝑠) ↦ ({𝑥} +𝑐 {𝑦})) = (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦})))
16 xpsval.f . . . . . . 7 𝐹 = (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))
1715, 16syl6eqr 2662 . . . . . 6 ((𝑟 = 𝑅𝑠 = 𝑆) → (𝑥 ∈ (Base‘𝑟), 𝑦 ∈ (Base‘𝑠) ↦ ({𝑥} +𝑐 {𝑦})) = 𝐹)
1817cnveqd 5220 . . . . 5 ((𝑟 = 𝑅𝑠 = 𝑆) → (𝑥 ∈ (Base‘𝑟), 𝑦 ∈ (Base‘𝑠) ↦ ({𝑥} +𝑐 {𝑦})) = 𝐹)
19 fveq2 6103 . . . . . . . . 9 (𝑟 = 𝑅 → (Scalar‘𝑟) = (Scalar‘𝑅))
2019adantr 480 . . . . . . . 8 ((𝑟 = 𝑅𝑠 = 𝑆) → (Scalar‘𝑟) = (Scalar‘𝑅))
21 xpsval.k . . . . . . . 8 𝐺 = (Scalar‘𝑅)
2220, 21syl6eqr 2662 . . . . . . 7 ((𝑟 = 𝑅𝑠 = 𝑆) → (Scalar‘𝑟) = 𝐺)
23 sneq 4135 . . . . . . . . 9 (𝑟 = 𝑅 → {𝑟} = {𝑅})
24 sneq 4135 . . . . . . . . 9 (𝑠 = 𝑆 → {𝑠} = {𝑆})
2523, 24oveqan12d 6568 . . . . . . . 8 ((𝑟 = 𝑅𝑠 = 𝑆) → ({𝑟} +𝑐 {𝑠}) = ({𝑅} +𝑐 {𝑆}))
2625cnveqd 5220 . . . . . . 7 ((𝑟 = 𝑅𝑠 = 𝑆) → ({𝑟} +𝑐 {𝑠}) = ({𝑅} +𝑐 {𝑆}))
2722, 26oveq12d 6567 . . . . . 6 ((𝑟 = 𝑅𝑠 = 𝑆) → ((Scalar‘𝑟)Xs({𝑟} +𝑐 {𝑠})) = (𝐺Xs({𝑅} +𝑐 {𝑆})))
28 xpsval.u . . . . . 6 𝑈 = (𝐺Xs({𝑅} +𝑐 {𝑆}))
2927, 28syl6eqr 2662 . . . . 5 ((𝑟 = 𝑅𝑠 = 𝑆) → ((Scalar‘𝑟)Xs({𝑟} +𝑐 {𝑠})) = 𝑈)
3018, 29oveq12d 6567 . . . 4 ((𝑟 = 𝑅𝑠 = 𝑆) → ((𝑥 ∈ (Base‘𝑟), 𝑦 ∈ (Base‘𝑠) ↦ ({𝑥} +𝑐 {𝑦})) “s ((Scalar‘𝑟)Xs({𝑟} +𝑐 {𝑠}))) = (𝐹s 𝑈))
31 df-xps 15993 . . . 4 ×s = (𝑟 ∈ V, 𝑠 ∈ V ↦ ((𝑥 ∈ (Base‘𝑟), 𝑦 ∈ (Base‘𝑠) ↦ ({𝑥} +𝑐 {𝑦})) “s ((Scalar‘𝑟)Xs({𝑟} +𝑐 {𝑠}))))
32 ovex 6577 . . . 4 (𝐹s 𝑈) ∈ V
3330, 31, 32ovmpt2a 6689 . . 3 ((𝑅 ∈ V ∧ 𝑆 ∈ V) → (𝑅 ×s 𝑆) = (𝐹s 𝑈))
344, 7, 33syl2anc 691 . 2 (𝜑 → (𝑅 ×s 𝑆) = (𝐹s 𝑈))
351, 34syl5eq 2656 1 (𝜑𝑇 = (𝐹s 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  Vcvv 3173  {csn 4125  ccnv 5037  cfv 5804  (class class class)co 6549  cmpt2 6551   +𝑐 ccda 8872  Basecbs 15695  Scalarcsca 15771  Xscprds 15929  s cimas 15987   ×s cxps 15989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-iota 5768  df-fun 5806  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-xps 15993
This theorem is referenced by:  xpsbas  16057  xpsadd  16059  xpsmul  16060  xpssca  16061  xpsvsca  16062  xpsless  16063  xpsle  16064  xpsmnd  17153  xpsgrp  17357  xpstps  21423  xpstopnlem2  21424  xpsdsfn  21992  xpsxmet  21995  xpsdsval  21996  xpsmet  21997  xpsxms  22149  xpsms  22150
  Copyright terms: Public domain W3C validator