MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpsxmetlem Structured version   Visualization version   GIF version

Theorem xpsxmetlem 21994
Description: Lemma for xpsxmet 21995. (Contributed by Mario Carneiro, 21-Aug-2015.)
Hypotheses
Ref Expression
xpsds.t 𝑇 = (𝑅 ×s 𝑆)
xpsds.x 𝑋 = (Base‘𝑅)
xpsds.y 𝑌 = (Base‘𝑆)
xpsds.1 (𝜑𝑅𝑉)
xpsds.2 (𝜑𝑆𝑊)
xpsds.p 𝑃 = (dist‘𝑇)
xpsds.m 𝑀 = ((dist‘𝑅) ↾ (𝑋 × 𝑋))
xpsds.n 𝑁 = ((dist‘𝑆) ↾ (𝑌 × 𝑌))
xpsds.3 (𝜑𝑀 ∈ (∞Met‘𝑋))
xpsds.4 (𝜑𝑁 ∈ (∞Met‘𝑌))
Assertion
Ref Expression
xpsxmetlem (𝜑 → (dist‘((Scalar‘𝑅)Xs({𝑅} +𝑐 {𝑆}))) ∈ (∞Met‘ran (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))))
Distinct variable groups:   𝑥,𝑦   𝑥,𝑀   𝑥,𝑁   𝜑,𝑥   𝑥,𝑅   𝑥,𝑆   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦   𝑥,𝑊
Allowed substitution hints:   𝜑(𝑦)   𝑃(𝑥,𝑦)   𝑅(𝑦)   𝑆(𝑦)   𝑇(𝑥,𝑦)   𝑀(𝑦)   𝑁(𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑦)

Proof of Theorem xpsxmetlem
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 eqid 2610 . . 3 ((Scalar‘𝑅)Xs(𝑘 ∈ 2𝑜 ↦ (({𝑅} +𝑐 {𝑆})‘𝑘))) = ((Scalar‘𝑅)Xs(𝑘 ∈ 2𝑜 ↦ (({𝑅} +𝑐 {𝑆})‘𝑘)))
2 eqid 2610 . . 3 (Base‘((Scalar‘𝑅)Xs(𝑘 ∈ 2𝑜 ↦ (({𝑅} +𝑐 {𝑆})‘𝑘)))) = (Base‘((Scalar‘𝑅)Xs(𝑘 ∈ 2𝑜 ↦ (({𝑅} +𝑐 {𝑆})‘𝑘))))
3 eqid 2610 . . 3 (Base‘(({𝑅} +𝑐 {𝑆})‘𝑘)) = (Base‘(({𝑅} +𝑐 {𝑆})‘𝑘))
4 eqid 2610 . . 3 ((dist‘(({𝑅} +𝑐 {𝑆})‘𝑘)) ↾ ((Base‘(({𝑅} +𝑐 {𝑆})‘𝑘)) × (Base‘(({𝑅} +𝑐 {𝑆})‘𝑘)))) = ((dist‘(({𝑅} +𝑐 {𝑆})‘𝑘)) ↾ ((Base‘(({𝑅} +𝑐 {𝑆})‘𝑘)) × (Base‘(({𝑅} +𝑐 {𝑆})‘𝑘))))
5 eqid 2610 . . 3 (dist‘((Scalar‘𝑅)Xs(𝑘 ∈ 2𝑜 ↦ (({𝑅} +𝑐 {𝑆})‘𝑘)))) = (dist‘((Scalar‘𝑅)Xs(𝑘 ∈ 2𝑜 ↦ (({𝑅} +𝑐 {𝑆})‘𝑘))))
6 fvex 6113 . . . 4 (Scalar‘𝑅) ∈ V
76a1i 11 . . 3 (𝜑 → (Scalar‘𝑅) ∈ V)
8 2on 7455 . . . 4 2𝑜 ∈ On
98a1i 11 . . 3 (𝜑 → 2𝑜 ∈ On)
10 fvex 6113 . . . 4 (({𝑅} +𝑐 {𝑆})‘𝑘) ∈ V
1110a1i 11 . . 3 ((𝜑𝑘 ∈ 2𝑜) → (({𝑅} +𝑐 {𝑆})‘𝑘) ∈ V)
12 elpri 4145 . . . . 5 (𝑘 ∈ {∅, 1𝑜} → (𝑘 = ∅ ∨ 𝑘 = 1𝑜))
13 df2o3 7460 . . . . 5 2𝑜 = {∅, 1𝑜}
1412, 13eleq2s 2706 . . . 4 (𝑘 ∈ 2𝑜 → (𝑘 = ∅ ∨ 𝑘 = 1𝑜))
15 xpsds.3 . . . . . . 7 (𝜑𝑀 ∈ (∞Met‘𝑋))
1615adantr 480 . . . . . 6 ((𝜑𝑘 = ∅) → 𝑀 ∈ (∞Met‘𝑋))
17 fveq2 6103 . . . . . . . . . 10 (𝑘 = ∅ → (({𝑅} +𝑐 {𝑆})‘𝑘) = (({𝑅} +𝑐 {𝑆})‘∅))
18 xpsds.1 . . . . . . . . . . 11 (𝜑𝑅𝑉)
19 xpsc0 16043 . . . . . . . . . . 11 (𝑅𝑉 → (({𝑅} +𝑐 {𝑆})‘∅) = 𝑅)
2018, 19syl 17 . . . . . . . . . 10 (𝜑 → (({𝑅} +𝑐 {𝑆})‘∅) = 𝑅)
2117, 20sylan9eqr 2666 . . . . . . . . 9 ((𝜑𝑘 = ∅) → (({𝑅} +𝑐 {𝑆})‘𝑘) = 𝑅)
2221fveq2d 6107 . . . . . . . 8 ((𝜑𝑘 = ∅) → (dist‘(({𝑅} +𝑐 {𝑆})‘𝑘)) = (dist‘𝑅))
2321fveq2d 6107 . . . . . . . . . 10 ((𝜑𝑘 = ∅) → (Base‘(({𝑅} +𝑐 {𝑆})‘𝑘)) = (Base‘𝑅))
24 xpsds.x . . . . . . . . . 10 𝑋 = (Base‘𝑅)
2523, 24syl6eqr 2662 . . . . . . . . 9 ((𝜑𝑘 = ∅) → (Base‘(({𝑅} +𝑐 {𝑆})‘𝑘)) = 𝑋)
2625sqxpeqd 5065 . . . . . . . 8 ((𝜑𝑘 = ∅) → ((Base‘(({𝑅} +𝑐 {𝑆})‘𝑘)) × (Base‘(({𝑅} +𝑐 {𝑆})‘𝑘))) = (𝑋 × 𝑋))
2722, 26reseq12d 5318 . . . . . . 7 ((𝜑𝑘 = ∅) → ((dist‘(({𝑅} +𝑐 {𝑆})‘𝑘)) ↾ ((Base‘(({𝑅} +𝑐 {𝑆})‘𝑘)) × (Base‘(({𝑅} +𝑐 {𝑆})‘𝑘)))) = ((dist‘𝑅) ↾ (𝑋 × 𝑋)))
28 xpsds.m . . . . . . 7 𝑀 = ((dist‘𝑅) ↾ (𝑋 × 𝑋))
2927, 28syl6eqr 2662 . . . . . 6 ((𝜑𝑘 = ∅) → ((dist‘(({𝑅} +𝑐 {𝑆})‘𝑘)) ↾ ((Base‘(({𝑅} +𝑐 {𝑆})‘𝑘)) × (Base‘(({𝑅} +𝑐 {𝑆})‘𝑘)))) = 𝑀)
3025fveq2d 6107 . . . . . 6 ((𝜑𝑘 = ∅) → (∞Met‘(Base‘(({𝑅} +𝑐 {𝑆})‘𝑘))) = (∞Met‘𝑋))
3116, 29, 303eltr4d 2703 . . . . 5 ((𝜑𝑘 = ∅) → ((dist‘(({𝑅} +𝑐 {𝑆})‘𝑘)) ↾ ((Base‘(({𝑅} +𝑐 {𝑆})‘𝑘)) × (Base‘(({𝑅} +𝑐 {𝑆})‘𝑘)))) ∈ (∞Met‘(Base‘(({𝑅} +𝑐 {𝑆})‘𝑘))))
32 xpsds.4 . . . . . . 7 (𝜑𝑁 ∈ (∞Met‘𝑌))
3332adantr 480 . . . . . 6 ((𝜑𝑘 = 1𝑜) → 𝑁 ∈ (∞Met‘𝑌))
34 fveq2 6103 . . . . . . . . . 10 (𝑘 = 1𝑜 → (({𝑅} +𝑐 {𝑆})‘𝑘) = (({𝑅} +𝑐 {𝑆})‘1𝑜))
35 xpsds.2 . . . . . . . . . . 11 (𝜑𝑆𝑊)
36 xpsc1 16044 . . . . . . . . . . 11 (𝑆𝑊 → (({𝑅} +𝑐 {𝑆})‘1𝑜) = 𝑆)
3735, 36syl 17 . . . . . . . . . 10 (𝜑 → (({𝑅} +𝑐 {𝑆})‘1𝑜) = 𝑆)
3834, 37sylan9eqr 2666 . . . . . . . . 9 ((𝜑𝑘 = 1𝑜) → (({𝑅} +𝑐 {𝑆})‘𝑘) = 𝑆)
3938fveq2d 6107 . . . . . . . 8 ((𝜑𝑘 = 1𝑜) → (dist‘(({𝑅} +𝑐 {𝑆})‘𝑘)) = (dist‘𝑆))
4038fveq2d 6107 . . . . . . . . . 10 ((𝜑𝑘 = 1𝑜) → (Base‘(({𝑅} +𝑐 {𝑆})‘𝑘)) = (Base‘𝑆))
41 xpsds.y . . . . . . . . . 10 𝑌 = (Base‘𝑆)
4240, 41syl6eqr 2662 . . . . . . . . 9 ((𝜑𝑘 = 1𝑜) → (Base‘(({𝑅} +𝑐 {𝑆})‘𝑘)) = 𝑌)
4342sqxpeqd 5065 . . . . . . . 8 ((𝜑𝑘 = 1𝑜) → ((Base‘(({𝑅} +𝑐 {𝑆})‘𝑘)) × (Base‘(({𝑅} +𝑐 {𝑆})‘𝑘))) = (𝑌 × 𝑌))
4439, 43reseq12d 5318 . . . . . . 7 ((𝜑𝑘 = 1𝑜) → ((dist‘(({𝑅} +𝑐 {𝑆})‘𝑘)) ↾ ((Base‘(({𝑅} +𝑐 {𝑆})‘𝑘)) × (Base‘(({𝑅} +𝑐 {𝑆})‘𝑘)))) = ((dist‘𝑆) ↾ (𝑌 × 𝑌)))
45 xpsds.n . . . . . . 7 𝑁 = ((dist‘𝑆) ↾ (𝑌 × 𝑌))
4644, 45syl6eqr 2662 . . . . . 6 ((𝜑𝑘 = 1𝑜) → ((dist‘(({𝑅} +𝑐 {𝑆})‘𝑘)) ↾ ((Base‘(({𝑅} +𝑐 {𝑆})‘𝑘)) × (Base‘(({𝑅} +𝑐 {𝑆})‘𝑘)))) = 𝑁)
4742fveq2d 6107 . . . . . 6 ((𝜑𝑘 = 1𝑜) → (∞Met‘(Base‘(({𝑅} +𝑐 {𝑆})‘𝑘))) = (∞Met‘𝑌))
4833, 46, 473eltr4d 2703 . . . . 5 ((𝜑𝑘 = 1𝑜) → ((dist‘(({𝑅} +𝑐 {𝑆})‘𝑘)) ↾ ((Base‘(({𝑅} +𝑐 {𝑆})‘𝑘)) × (Base‘(({𝑅} +𝑐 {𝑆})‘𝑘)))) ∈ (∞Met‘(Base‘(({𝑅} +𝑐 {𝑆})‘𝑘))))
4931, 48jaodan 822 . . . 4 ((𝜑 ∧ (𝑘 = ∅ ∨ 𝑘 = 1𝑜)) → ((dist‘(({𝑅} +𝑐 {𝑆})‘𝑘)) ↾ ((Base‘(({𝑅} +𝑐 {𝑆})‘𝑘)) × (Base‘(({𝑅} +𝑐 {𝑆})‘𝑘)))) ∈ (∞Met‘(Base‘(({𝑅} +𝑐 {𝑆})‘𝑘))))
5014, 49sylan2 490 . . 3 ((𝜑𝑘 ∈ 2𝑜) → ((dist‘(({𝑅} +𝑐 {𝑆})‘𝑘)) ↾ ((Base‘(({𝑅} +𝑐 {𝑆})‘𝑘)) × (Base‘(({𝑅} +𝑐 {𝑆})‘𝑘)))) ∈ (∞Met‘(Base‘(({𝑅} +𝑐 {𝑆})‘𝑘))))
511, 2, 3, 4, 5, 7, 9, 11, 50prdsxmet 21984 . 2 (𝜑 → (dist‘((Scalar‘𝑅)Xs(𝑘 ∈ 2𝑜 ↦ (({𝑅} +𝑐 {𝑆})‘𝑘)))) ∈ (∞Met‘(Base‘((Scalar‘𝑅)Xs(𝑘 ∈ 2𝑜 ↦ (({𝑅} +𝑐 {𝑆})‘𝑘))))))
52 xpscfn 16042 . . . . . 6 ((𝑅𝑉𝑆𝑊) → ({𝑅} +𝑐 {𝑆}) Fn 2𝑜)
5318, 35, 52syl2anc 691 . . . . 5 (𝜑({𝑅} +𝑐 {𝑆}) Fn 2𝑜)
54 dffn5 6151 . . . . 5 (({𝑅} +𝑐 {𝑆}) Fn 2𝑜({𝑅} +𝑐 {𝑆}) = (𝑘 ∈ 2𝑜 ↦ (({𝑅} +𝑐 {𝑆})‘𝑘)))
5553, 54sylib 207 . . . 4 (𝜑({𝑅} +𝑐 {𝑆}) = (𝑘 ∈ 2𝑜 ↦ (({𝑅} +𝑐 {𝑆})‘𝑘)))
5655oveq2d 6565 . . 3 (𝜑 → ((Scalar‘𝑅)Xs({𝑅} +𝑐 {𝑆})) = ((Scalar‘𝑅)Xs(𝑘 ∈ 2𝑜 ↦ (({𝑅} +𝑐 {𝑆})‘𝑘))))
5756fveq2d 6107 . 2 (𝜑 → (dist‘((Scalar‘𝑅)Xs({𝑅} +𝑐 {𝑆}))) = (dist‘((Scalar‘𝑅)Xs(𝑘 ∈ 2𝑜 ↦ (({𝑅} +𝑐 {𝑆})‘𝑘)))))
58 xpsds.t . . . . 5 𝑇 = (𝑅 ×s 𝑆)
59 eqid 2610 . . . . 5 (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦})) = (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))
60 eqid 2610 . . . . 5 (Scalar‘𝑅) = (Scalar‘𝑅)
61 eqid 2610 . . . . 5 ((Scalar‘𝑅)Xs({𝑅} +𝑐 {𝑆})) = ((Scalar‘𝑅)Xs({𝑅} +𝑐 {𝑆}))
6258, 24, 41, 18, 35, 59, 60, 61xpslem 16056 . . . 4 (𝜑 → ran (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦})) = (Base‘((Scalar‘𝑅)Xs({𝑅} +𝑐 {𝑆}))))
6356fveq2d 6107 . . . 4 (𝜑 → (Base‘((Scalar‘𝑅)Xs({𝑅} +𝑐 {𝑆}))) = (Base‘((Scalar‘𝑅)Xs(𝑘 ∈ 2𝑜 ↦ (({𝑅} +𝑐 {𝑆})‘𝑘)))))
6462, 63eqtrd 2644 . . 3 (𝜑 → ran (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦})) = (Base‘((Scalar‘𝑅)Xs(𝑘 ∈ 2𝑜 ↦ (({𝑅} +𝑐 {𝑆})‘𝑘)))))
6564fveq2d 6107 . 2 (𝜑 → (∞Met‘ran (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))) = (∞Met‘(Base‘((Scalar‘𝑅)Xs(𝑘 ∈ 2𝑜 ↦ (({𝑅} +𝑐 {𝑆})‘𝑘))))))
6651, 57, 653eltr4d 2703 1 (𝜑 → (dist‘((Scalar‘𝑅)Xs({𝑅} +𝑐 {𝑆}))) ∈ (∞Met‘ran (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 382  wa 383   = wceq 1475  wcel 1977  Vcvv 3173  c0 3874  {csn 4125  {cpr 4127  cmpt 4643   × cxp 5036  ccnv 5037  ran crn 5039  cres 5040  Oncon0 5640   Fn wfn 5799  cfv 5804  (class class class)co 6549  cmpt2 6551  1𝑜c1o 7440  2𝑜c2o 7441   +𝑐 ccda 8872  Basecbs 15695  Scalarcsca 15771  distcds 15777  Xscprds 15929   ×s cxps 15989  ∞Metcxmt 19552
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-icc 12053  df-fz 12198  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-plusg 15781  df-mulr 15782  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-hom 15793  df-cco 15794  df-prds 15931  df-xmet 19560
This theorem is referenced by:  xpsxmet  21995  xpsdsval  21996
  Copyright terms: Public domain W3C validator