MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dffn5 Structured version   Visualization version   GIF version

Theorem dffn5 6151
Description: Representation of a function in terms of its values. (Contributed by FL, 14-Sep-2013.) (Proof shortened by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
dffn5 (𝐹 Fn 𝐴𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹

Proof of Theorem dffn5
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fnrel 5903 . . . . 5 (𝐹 Fn 𝐴 → Rel 𝐹)
2 dfrel4v 5503 . . . . 5 (Rel 𝐹𝐹 = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐹𝑦})
31, 2sylib 207 . . . 4 (𝐹 Fn 𝐴𝐹 = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐹𝑦})
4 fnbr 5907 . . . . . . . 8 ((𝐹 Fn 𝐴𝑥𝐹𝑦) → 𝑥𝐴)
54ex 449 . . . . . . 7 (𝐹 Fn 𝐴 → (𝑥𝐹𝑦𝑥𝐴))
65pm4.71rd 665 . . . . . 6 (𝐹 Fn 𝐴 → (𝑥𝐹𝑦 ↔ (𝑥𝐴𝑥𝐹𝑦)))
7 eqcom 2617 . . . . . . . 8 (𝑦 = (𝐹𝑥) ↔ (𝐹𝑥) = 𝑦)
8 fnbrfvb 6146 . . . . . . . 8 ((𝐹 Fn 𝐴𝑥𝐴) → ((𝐹𝑥) = 𝑦𝑥𝐹𝑦))
97, 8syl5bb 271 . . . . . . 7 ((𝐹 Fn 𝐴𝑥𝐴) → (𝑦 = (𝐹𝑥) ↔ 𝑥𝐹𝑦))
109pm5.32da 671 . . . . . 6 (𝐹 Fn 𝐴 → ((𝑥𝐴𝑦 = (𝐹𝑥)) ↔ (𝑥𝐴𝑥𝐹𝑦)))
116, 10bitr4d 270 . . . . 5 (𝐹 Fn 𝐴 → (𝑥𝐹𝑦 ↔ (𝑥𝐴𝑦 = (𝐹𝑥))))
1211opabbidv 4648 . . . 4 (𝐹 Fn 𝐴 → {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐹𝑦} = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐹𝑥))})
133, 12eqtrd 2644 . . 3 (𝐹 Fn 𝐴𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐹𝑥))})
14 df-mpt 4645 . . 3 (𝑥𝐴 ↦ (𝐹𝑥)) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐹𝑥))}
1513, 14syl6eqr 2662 . 2 (𝐹 Fn 𝐴𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
16 fvex 6113 . . . 4 (𝐹𝑥) ∈ V
17 eqid 2610 . . . 4 (𝑥𝐴 ↦ (𝐹𝑥)) = (𝑥𝐴 ↦ (𝐹𝑥))
1816, 17fnmpti 5935 . . 3 (𝑥𝐴 ↦ (𝐹𝑥)) Fn 𝐴
19 fneq1 5893 . . 3 (𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)) → (𝐹 Fn 𝐴 ↔ (𝑥𝐴 ↦ (𝐹𝑥)) Fn 𝐴))
2018, 19mpbiri 247 . 2 (𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)) → 𝐹 Fn 𝐴)
2115, 20impbii 198 1 (𝐹 Fn 𝐴𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wb 195  wa 383   = wceq 1475  wcel 1977   class class class wbr 4583  {copab 4642  cmpt 4643  Rel wrel 5043   Fn wfn 5799  cfv 5804
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-iota 5768  df-fun 5806  df-fn 5807  df-fv 5812
This theorem is referenced by:  fnrnfv  6152  feqmptd  6159  dffn5f  6162  eqfnfv  6219  fndmin  6232  fcompt  6306  funiun  6318  resfunexg  6384  eufnfv  6395  nvocnv  6437  fnov  6666  offveqb  6817  caofinvl  6822  oprabco  7148  df1st2  7150  df2nd2  7151  curry1  7156  curry2  7159  resixpfo  7832  pw2f1olem  7949  marypha2lem3  8226  seqof  12720  prmrec  15464  prdsbascl  15966  xpsaddlem  16058  xpsvsca  16062  oppccatid  16202  fuclid  16449  fucrid  16450  curfuncf  16701  yonedainv  16744  yonffthlem  16745  prdsidlem  17145  pws0g  17149  prdsinvlem  17347  gsummptmhm  18163  staffn  18672  prdslmodd  18790  ofco2  20076  1mavmul  20173  cnmpt1st  21281  cnmpt2nd  21282  ptunhmeo  21421  xpsxmetlem  21994  xpsmet  21997  itg2split  23322  pserulm  23980  pserdvlem2  23986  logcn  24193  logblog  24330  emcllem5  24526  gamcvg2lem  24585  fcomptf  28840  gsummpt2d  29112  pl1cn  29329  esumpcvgval  29467  esumcvgsum  29477  eulerpartgbij  29761  dstfrvclim1  29866  ptpcon  30469  knoppcnlem8  31660  knoppcnlem11  31663  curfv  32559  ovoliunnfl  32621  voliunnfl  32623  fnopabco  32687  upixp  32694  prdsbnd  32762  prdstotbnd  32763  prdsbnd2  32764  fgraphopab  36807  expgrowthi  37554  expgrowth  37556  uzmptshftfval  37567  dvcosre  38799  fourierdlem56  39055  fourierdlem62  39061  crctcshlem4  41023  eucrct2eupth  41413  fdmdifeqresdif  41913  offvalfv  41914
  Copyright terms: Public domain W3C validator