Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  xlebnum Structured version   Visualization version   GIF version

Theorem xlebnum 22572
 Description: Generalize lebnum 22571 to extended metrics. (Contributed by Mario Carneiro, 5-Sep-2015.)
Hypotheses
Ref Expression
xlebnum.j 𝐽 = (MetOpen‘𝐷)
xlebnum.d (𝜑𝐷 ∈ (∞Met‘𝑋))
xlebnum.c (𝜑𝐽 ∈ Comp)
xlebnum.s (𝜑𝑈𝐽)
xlebnum.u (𝜑𝑋 = 𝑈)
Assertion
Ref Expression
xlebnum (𝜑 → ∃𝑑 ∈ ℝ+𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢)
Distinct variable groups:   𝑢,𝑑,𝑥,𝐷   𝜑,𝑢,𝑥   𝑈,𝑑,𝑢,𝑥   𝑋,𝑑,𝑢,𝑥
Allowed substitution hints:   𝜑(𝑑)   𝐽(𝑥,𝑢,𝑑)

Proof of Theorem xlebnum
Dummy variables 𝑟 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2610 . . 3 (MetOpen‘(𝑦𝑋, 𝑧𝑋 ↦ if((𝑦𝐷𝑧) ≤ 1, (𝑦𝐷𝑧), 1))) = (MetOpen‘(𝑦𝑋, 𝑧𝑋 ↦ if((𝑦𝐷𝑧) ≤ 1, (𝑦𝐷𝑧), 1)))
2 xlebnum.d . . . 4 (𝜑𝐷 ∈ (∞Met‘𝑋))
3 1rp 11712 . . . 4 1 ∈ ℝ+
4 eqid 2610 . . . . 5 (𝑦𝑋, 𝑧𝑋 ↦ if((𝑦𝐷𝑧) ≤ 1, (𝑦𝐷𝑧), 1)) = (𝑦𝑋, 𝑧𝑋 ↦ if((𝑦𝐷𝑧) ≤ 1, (𝑦𝐷𝑧), 1))
54stdbdmet 22131 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 1 ∈ ℝ+) → (𝑦𝑋, 𝑧𝑋 ↦ if((𝑦𝐷𝑧) ≤ 1, (𝑦𝐷𝑧), 1)) ∈ (Met‘𝑋))
62, 3, 5sylancl 693 . . 3 (𝜑 → (𝑦𝑋, 𝑧𝑋 ↦ if((𝑦𝐷𝑧) ≤ 1, (𝑦𝐷𝑧), 1)) ∈ (Met‘𝑋))
7 rpxr 11716 . . . . . 6 (1 ∈ ℝ+ → 1 ∈ ℝ*)
83, 7mp1i 13 . . . . 5 (𝜑 → 1 ∈ ℝ*)
9 0lt1 10429 . . . . . 6 0 < 1
109a1i 11 . . . . 5 (𝜑 → 0 < 1)
11 xlebnum.j . . . . . 6 𝐽 = (MetOpen‘𝐷)
124, 11stdbdmopn 22133 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 1 ∈ ℝ* ∧ 0 < 1) → 𝐽 = (MetOpen‘(𝑦𝑋, 𝑧𝑋 ↦ if((𝑦𝐷𝑧) ≤ 1, (𝑦𝐷𝑧), 1))))
132, 8, 10, 12syl3anc 1318 . . . 4 (𝜑𝐽 = (MetOpen‘(𝑦𝑋, 𝑧𝑋 ↦ if((𝑦𝐷𝑧) ≤ 1, (𝑦𝐷𝑧), 1))))
14 xlebnum.c . . . 4 (𝜑𝐽 ∈ Comp)
1513, 14eqeltrrd 2689 . . 3 (𝜑 → (MetOpen‘(𝑦𝑋, 𝑧𝑋 ↦ if((𝑦𝐷𝑧) ≤ 1, (𝑦𝐷𝑧), 1))) ∈ Comp)
16 xlebnum.s . . . 4 (𝜑𝑈𝐽)
1716, 13sseqtrd 3604 . . 3 (𝜑𝑈 ⊆ (MetOpen‘(𝑦𝑋, 𝑧𝑋 ↦ if((𝑦𝐷𝑧) ≤ 1, (𝑦𝐷𝑧), 1))))
18 xlebnum.u . . 3 (𝜑𝑋 = 𝑈)
191, 6, 15, 17, 18lebnum 22571 . 2 (𝜑 → ∃𝑟 ∈ ℝ+𝑥𝑋𝑢𝑈 (𝑥(ball‘(𝑦𝑋, 𝑧𝑋 ↦ if((𝑦𝐷𝑧) ≤ 1, (𝑦𝐷𝑧), 1)))𝑟) ⊆ 𝑢)
20 simpr 476 . . . . 5 ((𝜑𝑟 ∈ ℝ+) → 𝑟 ∈ ℝ+)
21 ifcl 4080 . . . . 5 ((𝑟 ∈ ℝ+ ∧ 1 ∈ ℝ+) → if(𝑟 ≤ 1, 𝑟, 1) ∈ ℝ+)
2220, 3, 21sylancl 693 . . . 4 ((𝜑𝑟 ∈ ℝ+) → if(𝑟 ≤ 1, 𝑟, 1) ∈ ℝ+)
232ad2antrr 758 . . . . . . . . 9 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑥𝑋) → 𝐷 ∈ (∞Met‘𝑋))
243, 7mp1i 13 . . . . . . . . 9 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑥𝑋) → 1 ∈ ℝ*)
259a1i 11 . . . . . . . . 9 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑥𝑋) → 0 < 1)
26 simpr 476 . . . . . . . . 9 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑥𝑋) → 𝑥𝑋)
2722adantr 480 . . . . . . . . . 10 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑥𝑋) → if(𝑟 ≤ 1, 𝑟, 1) ∈ ℝ+)
28 rpxr 11716 . . . . . . . . . 10 (if(𝑟 ≤ 1, 𝑟, 1) ∈ ℝ+ → if(𝑟 ≤ 1, 𝑟, 1) ∈ ℝ*)
2927, 28syl 17 . . . . . . . . 9 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑥𝑋) → if(𝑟 ≤ 1, 𝑟, 1) ∈ ℝ*)
30 rpre 11715 . . . . . . . . . . 11 (𝑟 ∈ ℝ+𝑟 ∈ ℝ)
3130ad2antlr 759 . . . . . . . . . 10 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑥𝑋) → 𝑟 ∈ ℝ)
32 1re 9918 . . . . . . . . . 10 1 ∈ ℝ
33 min2 11895 . . . . . . . . . 10 ((𝑟 ∈ ℝ ∧ 1 ∈ ℝ) → if(𝑟 ≤ 1, 𝑟, 1) ≤ 1)
3431, 32, 33sylancl 693 . . . . . . . . 9 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑥𝑋) → if(𝑟 ≤ 1, 𝑟, 1) ≤ 1)
354stdbdbl 22132 . . . . . . . . 9 (((𝐷 ∈ (∞Met‘𝑋) ∧ 1 ∈ ℝ* ∧ 0 < 1) ∧ (𝑥𝑋 ∧ if(𝑟 ≤ 1, 𝑟, 1) ∈ ℝ* ∧ if(𝑟 ≤ 1, 𝑟, 1) ≤ 1)) → (𝑥(ball‘(𝑦𝑋, 𝑧𝑋 ↦ if((𝑦𝐷𝑧) ≤ 1, (𝑦𝐷𝑧), 1)))if(𝑟 ≤ 1, 𝑟, 1)) = (𝑥(ball‘𝐷)if(𝑟 ≤ 1, 𝑟, 1)))
3623, 24, 25, 26, 29, 34, 35syl33anc 1333 . . . . . . . 8 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑥𝑋) → (𝑥(ball‘(𝑦𝑋, 𝑧𝑋 ↦ if((𝑦𝐷𝑧) ≤ 1, (𝑦𝐷𝑧), 1)))if(𝑟 ≤ 1, 𝑟, 1)) = (𝑥(ball‘𝐷)if(𝑟 ≤ 1, 𝑟, 1)))
376ad2antrr 758 . . . . . . . . . 10 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑥𝑋) → (𝑦𝑋, 𝑧𝑋 ↦ if((𝑦𝐷𝑧) ≤ 1, (𝑦𝐷𝑧), 1)) ∈ (Met‘𝑋))
38 metxmet 21949 . . . . . . . . . 10 ((𝑦𝑋, 𝑧𝑋 ↦ if((𝑦𝐷𝑧) ≤ 1, (𝑦𝐷𝑧), 1)) ∈ (Met‘𝑋) → (𝑦𝑋, 𝑧𝑋 ↦ if((𝑦𝐷𝑧) ≤ 1, (𝑦𝐷𝑧), 1)) ∈ (∞Met‘𝑋))
3937, 38syl 17 . . . . . . . . 9 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑥𝑋) → (𝑦𝑋, 𝑧𝑋 ↦ if((𝑦𝐷𝑧) ≤ 1, (𝑦𝐷𝑧), 1)) ∈ (∞Met‘𝑋))
40 rpxr 11716 . . . . . . . . . 10 (𝑟 ∈ ℝ+𝑟 ∈ ℝ*)
4140ad2antlr 759 . . . . . . . . 9 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑥𝑋) → 𝑟 ∈ ℝ*)
42 min1 11894 . . . . . . . . . 10 ((𝑟 ∈ ℝ ∧ 1 ∈ ℝ) → if(𝑟 ≤ 1, 𝑟, 1) ≤ 𝑟)
4331, 32, 42sylancl 693 . . . . . . . . 9 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑥𝑋) → if(𝑟 ≤ 1, 𝑟, 1) ≤ 𝑟)
44 ssbl 22038 . . . . . . . . 9 ((((𝑦𝑋, 𝑧𝑋 ↦ if((𝑦𝐷𝑧) ≤ 1, (𝑦𝐷𝑧), 1)) ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (if(𝑟 ≤ 1, 𝑟, 1) ∈ ℝ*𝑟 ∈ ℝ*) ∧ if(𝑟 ≤ 1, 𝑟, 1) ≤ 𝑟) → (𝑥(ball‘(𝑦𝑋, 𝑧𝑋 ↦ if((𝑦𝐷𝑧) ≤ 1, (𝑦𝐷𝑧), 1)))if(𝑟 ≤ 1, 𝑟, 1)) ⊆ (𝑥(ball‘(𝑦𝑋, 𝑧𝑋 ↦ if((𝑦𝐷𝑧) ≤ 1, (𝑦𝐷𝑧), 1)))𝑟))
4539, 26, 29, 41, 43, 44syl221anc 1329 . . . . . . . 8 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑥𝑋) → (𝑥(ball‘(𝑦𝑋, 𝑧𝑋 ↦ if((𝑦𝐷𝑧) ≤ 1, (𝑦𝐷𝑧), 1)))if(𝑟 ≤ 1, 𝑟, 1)) ⊆ (𝑥(ball‘(𝑦𝑋, 𝑧𝑋 ↦ if((𝑦𝐷𝑧) ≤ 1, (𝑦𝐷𝑧), 1)))𝑟))
4636, 45eqsstr3d 3603 . . . . . . 7 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑥𝑋) → (𝑥(ball‘𝐷)if(𝑟 ≤ 1, 𝑟, 1)) ⊆ (𝑥(ball‘(𝑦𝑋, 𝑧𝑋 ↦ if((𝑦𝐷𝑧) ≤ 1, (𝑦𝐷𝑧), 1)))𝑟))
47 sstr2 3575 . . . . . . 7 ((𝑥(ball‘𝐷)if(𝑟 ≤ 1, 𝑟, 1)) ⊆ (𝑥(ball‘(𝑦𝑋, 𝑧𝑋 ↦ if((𝑦𝐷𝑧) ≤ 1, (𝑦𝐷𝑧), 1)))𝑟) → ((𝑥(ball‘(𝑦𝑋, 𝑧𝑋 ↦ if((𝑦𝐷𝑧) ≤ 1, (𝑦𝐷𝑧), 1)))𝑟) ⊆ 𝑢 → (𝑥(ball‘𝐷)if(𝑟 ≤ 1, 𝑟, 1)) ⊆ 𝑢))
4846, 47syl 17 . . . . . 6 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑥𝑋) → ((𝑥(ball‘(𝑦𝑋, 𝑧𝑋 ↦ if((𝑦𝐷𝑧) ≤ 1, (𝑦𝐷𝑧), 1)))𝑟) ⊆ 𝑢 → (𝑥(ball‘𝐷)if(𝑟 ≤ 1, 𝑟, 1)) ⊆ 𝑢))
4948reximdv 2999 . . . . 5 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑥𝑋) → (∃𝑢𝑈 (𝑥(ball‘(𝑦𝑋, 𝑧𝑋 ↦ if((𝑦𝐷𝑧) ≤ 1, (𝑦𝐷𝑧), 1)))𝑟) ⊆ 𝑢 → ∃𝑢𝑈 (𝑥(ball‘𝐷)if(𝑟 ≤ 1, 𝑟, 1)) ⊆ 𝑢))
5049ralimdva 2945 . . . 4 ((𝜑𝑟 ∈ ℝ+) → (∀𝑥𝑋𝑢𝑈 (𝑥(ball‘(𝑦𝑋, 𝑧𝑋 ↦ if((𝑦𝐷𝑧) ≤ 1, (𝑦𝐷𝑧), 1)))𝑟) ⊆ 𝑢 → ∀𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)if(𝑟 ≤ 1, 𝑟, 1)) ⊆ 𝑢))
51 oveq2 6557 . . . . . . . 8 (𝑑 = if(𝑟 ≤ 1, 𝑟, 1) → (𝑥(ball‘𝐷)𝑑) = (𝑥(ball‘𝐷)if(𝑟 ≤ 1, 𝑟, 1)))
5251sseq1d 3595 . . . . . . 7 (𝑑 = if(𝑟 ≤ 1, 𝑟, 1) → ((𝑥(ball‘𝐷)𝑑) ⊆ 𝑢 ↔ (𝑥(ball‘𝐷)if(𝑟 ≤ 1, 𝑟, 1)) ⊆ 𝑢))
5352rexbidv 3034 . . . . . 6 (𝑑 = if(𝑟 ≤ 1, 𝑟, 1) → (∃𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢 ↔ ∃𝑢𝑈 (𝑥(ball‘𝐷)if(𝑟 ≤ 1, 𝑟, 1)) ⊆ 𝑢))
5453ralbidv 2969 . . . . 5 (𝑑 = if(𝑟 ≤ 1, 𝑟, 1) → (∀𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢 ↔ ∀𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)if(𝑟 ≤ 1, 𝑟, 1)) ⊆ 𝑢))
5554rspcev 3282 . . . 4 ((if(𝑟 ≤ 1, 𝑟, 1) ∈ ℝ+ ∧ ∀𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)if(𝑟 ≤ 1, 𝑟, 1)) ⊆ 𝑢) → ∃𝑑 ∈ ℝ+𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢)
5622, 50, 55syl6an 566 . . 3 ((𝜑𝑟 ∈ ℝ+) → (∀𝑥𝑋𝑢𝑈 (𝑥(ball‘(𝑦𝑋, 𝑧𝑋 ↦ if((𝑦𝐷𝑧) ≤ 1, (𝑦𝐷𝑧), 1)))𝑟) ⊆ 𝑢 → ∃𝑑 ∈ ℝ+𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢))
5756rexlimdva 3013 . 2 (𝜑 → (∃𝑟 ∈ ℝ+𝑥𝑋𝑢𝑈 (𝑥(ball‘(𝑦𝑋, 𝑧𝑋 ↦ if((𝑦𝐷𝑧) ≤ 1, (𝑦𝐷𝑧), 1)))𝑟) ⊆ 𝑢 → ∃𝑑 ∈ ℝ+𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢))
5819, 57mpd 15 1 (𝜑 → ∃𝑑 ∈ ℝ+𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977  ∀wral 2896  ∃wrex 2897   ⊆ wss 3540  ifcif 4036  ∪ cuni 4372   class class class wbr 4583  ‘cfv 5804  (class class class)co 6549   ↦ cmpt2 6551  ℝcr 9814  0cc0 9815  1c1 9816  ℝ*cxr 9952   < clt 9953   ≤ cle 9954  ℝ+crp 11708  ∞Metcxmt 19552  Metcme 19553  ballcbl 19554  MetOpencmopn 19557  Compccmp 20999 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-ec 7631  df-map 7746  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-cn 20841  df-cnp 20842  df-cmp 21000  df-tx 21175  df-hmeo 21368  df-xms 21935  df-ms 21936  df-tms 21937 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator