MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lebnumii Structured version   Visualization version   GIF version

Theorem lebnumii 22573
Description: Specialize the Lebesgue number lemma lebnum 22571 to the unit interval. (Contributed by Mario Carneiro, 14-Feb-2015.)
Assertion
Ref Expression
lebnumii ((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) → ∃𝑛 ∈ ℕ ∀𝑘 ∈ (1...𝑛)∃𝑢𝑈 (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛)) ⊆ 𝑢)
Distinct variable group:   𝑘,𝑛,𝑢,𝑈

Proof of Theorem lebnumii
Dummy variables 𝑟 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ii 22488 . . 3 II = (MetOpen‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))
2 cnmet 22385 . . . . 5 (abs ∘ − ) ∈ (Met‘ℂ)
3 unitssre 12190 . . . . . 6 (0[,]1) ⊆ ℝ
4 ax-resscn 9872 . . . . . 6 ℝ ⊆ ℂ
53, 4sstri 3577 . . . . 5 (0[,]1) ⊆ ℂ
6 metres2 21978 . . . . 5 (((abs ∘ − ) ∈ (Met‘ℂ) ∧ (0[,]1) ⊆ ℂ) → ((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))) ∈ (Met‘(0[,]1)))
72, 5, 6mp2an 704 . . . 4 ((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))) ∈ (Met‘(0[,]1))
87a1i 11 . . 3 ((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) → ((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))) ∈ (Met‘(0[,]1)))
9 iicmp 22497 . . . 4 II ∈ Comp
109a1i 11 . . 3 ((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) → II ∈ Comp)
11 simpl 472 . . 3 ((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) → 𝑈 ⊆ II)
12 simpr 476 . . 3 ((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) → (0[,]1) = 𝑈)
131, 8, 10, 11, 12lebnum 22571 . 2 ((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) → ∃𝑟 ∈ ℝ+𝑥 ∈ (0[,]1)∃𝑢𝑈 (𝑥(ball‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))𝑟) ⊆ 𝑢)
14 rpreccl 11733 . . . . . . . 8 (𝑟 ∈ ℝ+ → (1 / 𝑟) ∈ ℝ+)
1514adantl 481 . . . . . . 7 (((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) → (1 / 𝑟) ∈ ℝ+)
1615rpred 11748 . . . . . 6 (((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) → (1 / 𝑟) ∈ ℝ)
1715rpge0d 11752 . . . . . 6 (((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) → 0 ≤ (1 / 𝑟))
18 flge0nn0 12483 . . . . . 6 (((1 / 𝑟) ∈ ℝ ∧ 0 ≤ (1 / 𝑟)) → (⌊‘(1 / 𝑟)) ∈ ℕ0)
1916, 17, 18syl2anc 691 . . . . 5 (((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) → (⌊‘(1 / 𝑟)) ∈ ℕ0)
20 nn0p1nn 11209 . . . . 5 ((⌊‘(1 / 𝑟)) ∈ ℕ0 → ((⌊‘(1 / 𝑟)) + 1) ∈ ℕ)
2119, 20syl 17 . . . 4 (((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) → ((⌊‘(1 / 𝑟)) + 1) ∈ ℕ)
22 elfznn 12241 . . . . . . . . . . . 12 (𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1)) → 𝑘 ∈ ℕ)
2322adantl 481 . . . . . . . . . . 11 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → 𝑘 ∈ ℕ)
2423nnrpd 11746 . . . . . . . . . 10 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → 𝑘 ∈ ℝ+)
2521adantr 480 . . . . . . . . . . 11 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → ((⌊‘(1 / 𝑟)) + 1) ∈ ℕ)
2625nnrpd 11746 . . . . . . . . . 10 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → ((⌊‘(1 / 𝑟)) + 1) ∈ ℝ+)
2724, 26rpdivcld 11765 . . . . . . . . 9 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → (𝑘 / ((⌊‘(1 / 𝑟)) + 1)) ∈ ℝ+)
2827rpred 11748 . . . . . . . 8 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → (𝑘 / ((⌊‘(1 / 𝑟)) + 1)) ∈ ℝ)
2927rpge0d 11752 . . . . . . . 8 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → 0 ≤ (𝑘 / ((⌊‘(1 / 𝑟)) + 1)))
30 elfzle2 12216 . . . . . . . . . . 11 (𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1)) → 𝑘 ≤ ((⌊‘(1 / 𝑟)) + 1))
3130adantl 481 . . . . . . . . . 10 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → 𝑘 ≤ ((⌊‘(1 / 𝑟)) + 1))
3225nnred 10912 . . . . . . . . . . . 12 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → ((⌊‘(1 / 𝑟)) + 1) ∈ ℝ)
3332recnd 9947 . . . . . . . . . . 11 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → ((⌊‘(1 / 𝑟)) + 1) ∈ ℂ)
3433mulid1d 9936 . . . . . . . . . 10 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → (((⌊‘(1 / 𝑟)) + 1) · 1) = ((⌊‘(1 / 𝑟)) + 1))
3531, 34breqtrrd 4611 . . . . . . . . 9 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → 𝑘 ≤ (((⌊‘(1 / 𝑟)) + 1) · 1))
3623nnred 10912 . . . . . . . . . 10 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → 𝑘 ∈ ℝ)
37 1re 9918 . . . . . . . . . . 11 1 ∈ ℝ
3837a1i 11 . . . . . . . . . 10 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → 1 ∈ ℝ)
3925nngt0d 10941 . . . . . . . . . 10 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → 0 < ((⌊‘(1 / 𝑟)) + 1))
40 ledivmul 10778 . . . . . . . . . 10 ((𝑘 ∈ ℝ ∧ 1 ∈ ℝ ∧ (((⌊‘(1 / 𝑟)) + 1) ∈ ℝ ∧ 0 < ((⌊‘(1 / 𝑟)) + 1))) → ((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) ≤ 1 ↔ 𝑘 ≤ (((⌊‘(1 / 𝑟)) + 1) · 1)))
4136, 38, 32, 39, 40syl112anc 1322 . . . . . . . . 9 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → ((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) ≤ 1 ↔ 𝑘 ≤ (((⌊‘(1 / 𝑟)) + 1) · 1)))
4235, 41mpbird 246 . . . . . . . 8 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → (𝑘 / ((⌊‘(1 / 𝑟)) + 1)) ≤ 1)
43 0re 9919 . . . . . . . . 9 0 ∈ ℝ
4443, 37elicc2i 12110 . . . . . . . 8 ((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) ∈ (0[,]1) ↔ ((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) ∈ ℝ ∧ 0 ≤ (𝑘 / ((⌊‘(1 / 𝑟)) + 1)) ∧ (𝑘 / ((⌊‘(1 / 𝑟)) + 1)) ≤ 1))
4528, 29, 42, 44syl3anbrc 1239 . . . . . . 7 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → (𝑘 / ((⌊‘(1 / 𝑟)) + 1)) ∈ (0[,]1))
46 oveq1 6556 . . . . . . . . . 10 (𝑥 = (𝑘 / ((⌊‘(1 / 𝑟)) + 1)) → (𝑥(ball‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))𝑟) = ((𝑘 / ((⌊‘(1 / 𝑟)) + 1))(ball‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))𝑟))
4746sseq1d 3595 . . . . . . . . 9 (𝑥 = (𝑘 / ((⌊‘(1 / 𝑟)) + 1)) → ((𝑥(ball‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))𝑟) ⊆ 𝑢 ↔ ((𝑘 / ((⌊‘(1 / 𝑟)) + 1))(ball‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))𝑟) ⊆ 𝑢))
4847rexbidv 3034 . . . . . . . 8 (𝑥 = (𝑘 / ((⌊‘(1 / 𝑟)) + 1)) → (∃𝑢𝑈 (𝑥(ball‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))𝑟) ⊆ 𝑢 ↔ ∃𝑢𝑈 ((𝑘 / ((⌊‘(1 / 𝑟)) + 1))(ball‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))𝑟) ⊆ 𝑢))
4948rspcv 3278 . . . . . . 7 ((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) ∈ (0[,]1) → (∀𝑥 ∈ (0[,]1)∃𝑢𝑈 (𝑥(ball‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))𝑟) ⊆ 𝑢 → ∃𝑢𝑈 ((𝑘 / ((⌊‘(1 / 𝑟)) + 1))(ball‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))𝑟) ⊆ 𝑢))
5045, 49syl 17 . . . . . 6 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → (∀𝑥 ∈ (0[,]1)∃𝑢𝑈 (𝑥(ball‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))𝑟) ⊆ 𝑢 → ∃𝑢𝑈 ((𝑘 / ((⌊‘(1 / 𝑟)) + 1))(ball‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))𝑟) ⊆ 𝑢))
51 simplr 788 . . . . . . . . . . . . . 14 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → 𝑟 ∈ ℝ+)
5251rpred 11748 . . . . . . . . . . . . 13 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → 𝑟 ∈ ℝ)
5328, 52resubcld 10337 . . . . . . . . . . . 12 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → ((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) − 𝑟) ∈ ℝ)
5453rexrd 9968 . . . . . . . . . . 11 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → ((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) − 𝑟) ∈ ℝ*)
5528, 52readdcld 9948 . . . . . . . . . . . 12 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → ((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) + 𝑟) ∈ ℝ)
5655rexrd 9968 . . . . . . . . . . 11 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → ((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) + 𝑟) ∈ ℝ*)
57 nnm1nn0 11211 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → (𝑘 − 1) ∈ ℕ0)
5823, 57syl 17 . . . . . . . . . . . . . 14 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → (𝑘 − 1) ∈ ℕ0)
5958nn0red 11229 . . . . . . . . . . . . 13 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → (𝑘 − 1) ∈ ℝ)
6059, 25nndivred 10946 . . . . . . . . . . . 12 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → ((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1)) ∈ ℝ)
6136recnd 9947 . . . . . . . . . . . . . . 15 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → 𝑘 ∈ ℂ)
6259recnd 9947 . . . . . . . . . . . . . . 15 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → (𝑘 − 1) ∈ ℂ)
6325nnne0d 10942 . . . . . . . . . . . . . . 15 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → ((⌊‘(1 / 𝑟)) + 1) ≠ 0)
6461, 62, 33, 63divsubdird 10719 . . . . . . . . . . . . . 14 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → ((𝑘 − (𝑘 − 1)) / ((⌊‘(1 / 𝑟)) + 1)) = ((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) − ((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1))))
65 ax-1cn 9873 . . . . . . . . . . . . . . . 16 1 ∈ ℂ
66 nncan 10189 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑘 − (𝑘 − 1)) = 1)
6761, 65, 66sylancl 693 . . . . . . . . . . . . . . 15 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → (𝑘 − (𝑘 − 1)) = 1)
6867oveq1d 6564 . . . . . . . . . . . . . 14 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → ((𝑘 − (𝑘 − 1)) / ((⌊‘(1 / 𝑟)) + 1)) = (1 / ((⌊‘(1 / 𝑟)) + 1)))
6964, 68eqtr3d 2646 . . . . . . . . . . . . 13 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → ((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) − ((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1))) = (1 / ((⌊‘(1 / 𝑟)) + 1)))
7051rprecred 11759 . . . . . . . . . . . . . . 15 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → (1 / 𝑟) ∈ ℝ)
71 flltp1 12463 . . . . . . . . . . . . . . 15 ((1 / 𝑟) ∈ ℝ → (1 / 𝑟) < ((⌊‘(1 / 𝑟)) + 1))
7270, 71syl 17 . . . . . . . . . . . . . 14 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → (1 / 𝑟) < ((⌊‘(1 / 𝑟)) + 1))
73 rpgt0 11720 . . . . . . . . . . . . . . . 16 (𝑟 ∈ ℝ+ → 0 < 𝑟)
7473ad2antlr 759 . . . . . . . . . . . . . . 15 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → 0 < 𝑟)
75 ltdiv23 10793 . . . . . . . . . . . . . . 15 ((1 ∈ ℝ ∧ (𝑟 ∈ ℝ ∧ 0 < 𝑟) ∧ (((⌊‘(1 / 𝑟)) + 1) ∈ ℝ ∧ 0 < ((⌊‘(1 / 𝑟)) + 1))) → ((1 / 𝑟) < ((⌊‘(1 / 𝑟)) + 1) ↔ (1 / ((⌊‘(1 / 𝑟)) + 1)) < 𝑟))
7638, 52, 74, 32, 39, 75syl122anc 1327 . . . . . . . . . . . . . 14 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → ((1 / 𝑟) < ((⌊‘(1 / 𝑟)) + 1) ↔ (1 / ((⌊‘(1 / 𝑟)) + 1)) < 𝑟))
7772, 76mpbid 221 . . . . . . . . . . . . 13 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → (1 / ((⌊‘(1 / 𝑟)) + 1)) < 𝑟)
7869, 77eqbrtrd 4605 . . . . . . . . . . . 12 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → ((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) − ((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1))) < 𝑟)
7928, 60, 52, 78ltsub23d 10511 . . . . . . . . . . 11 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → ((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) − 𝑟) < ((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1)))
8028, 51ltaddrpd 11781 . . . . . . . . . . 11 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → (𝑘 / ((⌊‘(1 / 𝑟)) + 1)) < ((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) + 𝑟))
81 iccssioo 12113 . . . . . . . . . . 11 (((((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) − 𝑟) ∈ ℝ* ∧ ((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) + 𝑟) ∈ ℝ*) ∧ (((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) − 𝑟) < ((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1)) ∧ (𝑘 / ((⌊‘(1 / 𝑟)) + 1)) < ((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) + 𝑟))) → (((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1))[,](𝑘 / ((⌊‘(1 / 𝑟)) + 1))) ⊆ (((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) − 𝑟)(,)((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) + 𝑟)))
8254, 56, 79, 80, 81syl22anc 1319 . . . . . . . . . 10 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → (((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1))[,](𝑘 / ((⌊‘(1 / 𝑟)) + 1))) ⊆ (((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) − 𝑟)(,)((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) + 𝑟)))
83 0red 9920 . . . . . . . . . . 11 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → 0 ∈ ℝ)
8458nn0ge0d 11231 . . . . . . . . . . . 12 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → 0 ≤ (𝑘 − 1))
85 divge0 10771 . . . . . . . . . . . 12 ((((𝑘 − 1) ∈ ℝ ∧ 0 ≤ (𝑘 − 1)) ∧ (((⌊‘(1 / 𝑟)) + 1) ∈ ℝ ∧ 0 < ((⌊‘(1 / 𝑟)) + 1))) → 0 ≤ ((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1)))
8659, 84, 32, 39, 85syl22anc 1319 . . . . . . . . . . 11 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → 0 ≤ ((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1)))
87 iccss 12112 . . . . . . . . . . 11 (((0 ∈ ℝ ∧ 1 ∈ ℝ) ∧ (0 ≤ ((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1)) ∧ (𝑘 / ((⌊‘(1 / 𝑟)) + 1)) ≤ 1)) → (((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1))[,](𝑘 / ((⌊‘(1 / 𝑟)) + 1))) ⊆ (0[,]1))
8883, 38, 86, 42, 87syl22anc 1319 . . . . . . . . . 10 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → (((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1))[,](𝑘 / ((⌊‘(1 / 𝑟)) + 1))) ⊆ (0[,]1))
8982, 88ssind 3799 . . . . . . . . 9 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → (((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1))[,](𝑘 / ((⌊‘(1 / 𝑟)) + 1))) ⊆ ((((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) − 𝑟)(,)((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) + 𝑟)) ∩ (0[,]1)))
90 eqid 2610 . . . . . . . . . . . . 13 ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ))
9190rexmet 22402 . . . . . . . . . . . 12 ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ)
9291a1i 11 . . . . . . . . . . 11 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ))
93 sseqin2 3779 . . . . . . . . . . . . 13 ((0[,]1) ⊆ ℝ ↔ (ℝ ∩ (0[,]1)) = (0[,]1))
943, 93mpbi 219 . . . . . . . . . . . 12 (ℝ ∩ (0[,]1)) = (0[,]1)
9545, 94syl6eleqr 2699 . . . . . . . . . . 11 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → (𝑘 / ((⌊‘(1 / 𝑟)) + 1)) ∈ (ℝ ∩ (0[,]1)))
96 rpxr 11716 . . . . . . . . . . . 12 (𝑟 ∈ ℝ+𝑟 ∈ ℝ*)
9796ad2antlr 759 . . . . . . . . . . 11 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → 𝑟 ∈ ℝ*)
98 xpss12 5148 . . . . . . . . . . . . . . 15 (((0[,]1) ⊆ ℝ ∧ (0[,]1) ⊆ ℝ) → ((0[,]1) × (0[,]1)) ⊆ (ℝ × ℝ))
993, 3, 98mp2an 704 . . . . . . . . . . . . . 14 ((0[,]1) × (0[,]1)) ⊆ (ℝ × ℝ)
100 resabs1 5347 . . . . . . . . . . . . . 14 (((0[,]1) × (0[,]1)) ⊆ (ℝ × ℝ) → (((abs ∘ − ) ↾ (ℝ × ℝ)) ↾ ((0[,]1) × (0[,]1))) = ((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))
10199, 100ax-mp 5 . . . . . . . . . . . . 13 (((abs ∘ − ) ↾ (ℝ × ℝ)) ↾ ((0[,]1) × (0[,]1))) = ((abs ∘ − ) ↾ ((0[,]1) × (0[,]1)))
102101eqcomi 2619 . . . . . . . . . . . 12 ((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))) = (((abs ∘ − ) ↾ (ℝ × ℝ)) ↾ ((0[,]1) × (0[,]1)))
103102blres 22046 . . . . . . . . . . 11 ((((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ) ∧ (𝑘 / ((⌊‘(1 / 𝑟)) + 1)) ∈ (ℝ ∩ (0[,]1)) ∧ 𝑟 ∈ ℝ*) → ((𝑘 / ((⌊‘(1 / 𝑟)) + 1))(ball‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))𝑟) = (((𝑘 / ((⌊‘(1 / 𝑟)) + 1))(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ∩ (0[,]1)))
10492, 95, 97, 103syl3anc 1318 . . . . . . . . . 10 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → ((𝑘 / ((⌊‘(1 / 𝑟)) + 1))(ball‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))𝑟) = (((𝑘 / ((⌊‘(1 / 𝑟)) + 1))(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ∩ (0[,]1)))
10590bl2ioo 22403 . . . . . . . . . . . 12 (((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) ∈ ℝ ∧ 𝑟 ∈ ℝ) → ((𝑘 / ((⌊‘(1 / 𝑟)) + 1))(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) = (((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) − 𝑟)(,)((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) + 𝑟)))
10628, 52, 105syl2anc 691 . . . . . . . . . . 11 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → ((𝑘 / ((⌊‘(1 / 𝑟)) + 1))(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) = (((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) − 𝑟)(,)((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) + 𝑟)))
107106ineq1d 3775 . . . . . . . . . 10 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → (((𝑘 / ((⌊‘(1 / 𝑟)) + 1))(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ∩ (0[,]1)) = ((((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) − 𝑟)(,)((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) + 𝑟)) ∩ (0[,]1)))
108104, 107eqtrd 2644 . . . . . . . . 9 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → ((𝑘 / ((⌊‘(1 / 𝑟)) + 1))(ball‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))𝑟) = ((((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) − 𝑟)(,)((𝑘 / ((⌊‘(1 / 𝑟)) + 1)) + 𝑟)) ∩ (0[,]1)))
10989, 108sseqtr4d 3605 . . . . . . . 8 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → (((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1))[,](𝑘 / ((⌊‘(1 / 𝑟)) + 1))) ⊆ ((𝑘 / ((⌊‘(1 / 𝑟)) + 1))(ball‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))𝑟))
110 sstr2 3575 . . . . . . . 8 ((((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1))[,](𝑘 / ((⌊‘(1 / 𝑟)) + 1))) ⊆ ((𝑘 / ((⌊‘(1 / 𝑟)) + 1))(ball‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))𝑟) → (((𝑘 / ((⌊‘(1 / 𝑟)) + 1))(ball‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))𝑟) ⊆ 𝑢 → (((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1))[,](𝑘 / ((⌊‘(1 / 𝑟)) + 1))) ⊆ 𝑢))
111109, 110syl 17 . . . . . . 7 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → (((𝑘 / ((⌊‘(1 / 𝑟)) + 1))(ball‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))𝑟) ⊆ 𝑢 → (((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1))[,](𝑘 / ((⌊‘(1 / 𝑟)) + 1))) ⊆ 𝑢))
112111reximdv 2999 . . . . . 6 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → (∃𝑢𝑈 ((𝑘 / ((⌊‘(1 / 𝑟)) + 1))(ball‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))𝑟) ⊆ 𝑢 → ∃𝑢𝑈 (((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1))[,](𝑘 / ((⌊‘(1 / 𝑟)) + 1))) ⊆ 𝑢))
11350, 112syld 46 . . . . 5 ((((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))) → (∀𝑥 ∈ (0[,]1)∃𝑢𝑈 (𝑥(ball‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))𝑟) ⊆ 𝑢 → ∃𝑢𝑈 (((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1))[,](𝑘 / ((⌊‘(1 / 𝑟)) + 1))) ⊆ 𝑢))
114113ralrimdva 2952 . . . 4 (((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) → (∀𝑥 ∈ (0[,]1)∃𝑢𝑈 (𝑥(ball‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))𝑟) ⊆ 𝑢 → ∀𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))∃𝑢𝑈 (((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1))[,](𝑘 / ((⌊‘(1 / 𝑟)) + 1))) ⊆ 𝑢))
115 oveq2 6557 . . . . . 6 (𝑛 = ((⌊‘(1 / 𝑟)) + 1) → (1...𝑛) = (1...((⌊‘(1 / 𝑟)) + 1)))
116 oveq2 6557 . . . . . . . . 9 (𝑛 = ((⌊‘(1 / 𝑟)) + 1) → ((𝑘 − 1) / 𝑛) = ((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1)))
117 oveq2 6557 . . . . . . . . 9 (𝑛 = ((⌊‘(1 / 𝑟)) + 1) → (𝑘 / 𝑛) = (𝑘 / ((⌊‘(1 / 𝑟)) + 1)))
118116, 117oveq12d 6567 . . . . . . . 8 (𝑛 = ((⌊‘(1 / 𝑟)) + 1) → (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛)) = (((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1))[,](𝑘 / ((⌊‘(1 / 𝑟)) + 1))))
119118sseq1d 3595 . . . . . . 7 (𝑛 = ((⌊‘(1 / 𝑟)) + 1) → ((((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛)) ⊆ 𝑢 ↔ (((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1))[,](𝑘 / ((⌊‘(1 / 𝑟)) + 1))) ⊆ 𝑢))
120119rexbidv 3034 . . . . . 6 (𝑛 = ((⌊‘(1 / 𝑟)) + 1) → (∃𝑢𝑈 (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛)) ⊆ 𝑢 ↔ ∃𝑢𝑈 (((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1))[,](𝑘 / ((⌊‘(1 / 𝑟)) + 1))) ⊆ 𝑢))
121115, 120raleqbidv 3129 . . . . 5 (𝑛 = ((⌊‘(1 / 𝑟)) + 1) → (∀𝑘 ∈ (1...𝑛)∃𝑢𝑈 (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛)) ⊆ 𝑢 ↔ ∀𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))∃𝑢𝑈 (((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1))[,](𝑘 / ((⌊‘(1 / 𝑟)) + 1))) ⊆ 𝑢))
122121rspcev 3282 . . . 4 ((((⌊‘(1 / 𝑟)) + 1) ∈ ℕ ∧ ∀𝑘 ∈ (1...((⌊‘(1 / 𝑟)) + 1))∃𝑢𝑈 (((𝑘 − 1) / ((⌊‘(1 / 𝑟)) + 1))[,](𝑘 / ((⌊‘(1 / 𝑟)) + 1))) ⊆ 𝑢) → ∃𝑛 ∈ ℕ ∀𝑘 ∈ (1...𝑛)∃𝑢𝑈 (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛)) ⊆ 𝑢)
12321, 114, 122syl6an 566 . . 3 (((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) ∧ 𝑟 ∈ ℝ+) → (∀𝑥 ∈ (0[,]1)∃𝑢𝑈 (𝑥(ball‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))𝑟) ⊆ 𝑢 → ∃𝑛 ∈ ℕ ∀𝑘 ∈ (1...𝑛)∃𝑢𝑈 (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛)) ⊆ 𝑢))
124123rexlimdva 3013 . 2 ((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) → (∃𝑟 ∈ ℝ+𝑥 ∈ (0[,]1)∃𝑢𝑈 (𝑥(ball‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))𝑟) ⊆ 𝑢 → ∃𝑛 ∈ ℕ ∀𝑘 ∈ (1...𝑛)∃𝑢𝑈 (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛)) ⊆ 𝑢))
12513, 124mpd 15 1 ((𝑈 ⊆ II ∧ (0[,]1) = 𝑈) → ∃𝑛 ∈ ℕ ∀𝑘 ∈ (1...𝑛)∃𝑢𝑈 (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛)) ⊆ 𝑢)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wral 2896  wrex 2897  cin 3539  wss 3540   cuni 4372   class class class wbr 4583   × cxp 5036  cres 5040  ccom 5042  cfv 5804  (class class class)co 6549  cc 9813  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820  *cxr 9952   < clt 9953  cle 9954  cmin 10145   / cdiv 10563  cn 10897  0cn0 11169  +crp 11708  (,)cioo 12046  [,]cicc 12049  ...cfz 12197  cfl 12453  abscabs 13822  ∞Metcxmt 19552  Metcme 19553  ballcbl 19554  Compccmp 20999  IIcii 22486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-ec 7631  df-map 7746  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-cn 20841  df-cnp 20842  df-cmp 21000  df-tx 21175  df-hmeo 21368  df-xms 21935  df-ms 21936  df-tms 21937  df-ii 22488
This theorem is referenced by:  cvmliftlem15  30534
  Copyright terms: Public domain W3C validator