Proof of Theorem sibfinima
Step | Hyp | Ref
| Expression |
1 | | sitgval.2 |
. . . . . . . 8
⊢ (𝜑 → 𝑀 ∈ ∪ ran
measures) |
2 | | measbasedom 29592 |
. . . . . . . 8
⊢ (𝑀 ∈ ∪ ran measures ↔ 𝑀 ∈ (measures‘dom 𝑀)) |
3 | 1, 2 | sylib 207 |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈ (measures‘dom 𝑀)) |
4 | 3 | 3ad2ant1 1075 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺) → 𝑀 ∈ (measures‘dom 𝑀)) |
5 | | dmmeas 29591 |
. . . . . . . . 9
⊢ (𝑀 ∈ ∪ ran measures → dom 𝑀 ∈ ∪ ran
sigAlgebra) |
6 | 1, 5 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → dom 𝑀 ∈ ∪ ran
sigAlgebra) |
7 | 6 | 3ad2ant1 1075 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺) → dom 𝑀 ∈ ∪ ran
sigAlgebra) |
8 | | sitgval.s |
. . . . . . . . . 10
⊢ 𝑆 = (sigaGen‘𝐽) |
9 | | sibfinima.j |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐽 ∈ Fre) |
10 | 9 | sgsiga 29532 |
. . . . . . . . . 10
⊢ (𝜑 → (sigaGen‘𝐽) ∈ ∪ ran sigAlgebra) |
11 | 8, 10 | syl5eqel 2692 |
. . . . . . . . 9
⊢ (𝜑 → 𝑆 ∈ ∪ ran
sigAlgebra) |
12 | 11 | 3ad2ant1 1075 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺) → 𝑆 ∈ ∪ ran
sigAlgebra) |
13 | | sitgval.b |
. . . . . . . . . 10
⊢ 𝐵 = (Base‘𝑊) |
14 | | sitgval.j |
. . . . . . . . . 10
⊢ 𝐽 = (TopOpen‘𝑊) |
15 | | sitgval.0 |
. . . . . . . . . 10
⊢ 0 =
(0g‘𝑊) |
16 | | sitgval.x |
. . . . . . . . . 10
⊢ · = (
·𝑠 ‘𝑊) |
17 | | sitgval.h |
. . . . . . . . . 10
⊢ 𝐻 =
(ℝHom‘(Scalar‘𝑊)) |
18 | | sitgval.1 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑊 ∈ 𝑉) |
19 | | sibfmbl.1 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹 ∈ dom (𝑊sitg𝑀)) |
20 | 13, 14, 8, 15, 16, 17, 18, 1, 19 | sibfmbl 29724 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹 ∈ (dom 𝑀MblFnM𝑆)) |
21 | 20 | 3ad2ant1 1075 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺) → 𝐹 ∈ (dom 𝑀MblFnM𝑆)) |
22 | | sibfinima.w |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑊 ∈ TopSp) |
23 | 14 | tpstop 20554 |
. . . . . . . . . . . 12
⊢ (𝑊 ∈ TopSp → 𝐽 ∈ Top) |
24 | | cldssbrsiga 29577 |
. . . . . . . . . . . 12
⊢ (𝐽 ∈ Top →
(Clsd‘𝐽) ⊆
(sigaGen‘𝐽)) |
25 | 22, 23, 24 | 3syl 18 |
. . . . . . . . . . 11
⊢ (𝜑 → (Clsd‘𝐽) ⊆ (sigaGen‘𝐽)) |
26 | 25, 8 | syl6sseqr 3615 |
. . . . . . . . . 10
⊢ (𝜑 → (Clsd‘𝐽) ⊆ 𝑆) |
27 | 26 | 3ad2ant1 1075 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺) → (Clsd‘𝐽) ⊆ 𝑆) |
28 | 9 | 3ad2ant1 1075 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺) → 𝐽 ∈ Fre) |
29 | 13, 14, 8, 15, 16, 17, 18, 1, 19 | sibff 29725 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐹:∪ dom 𝑀⟶∪ 𝐽) |
30 | | frn 5966 |
. . . . . . . . . . . . 13
⊢ (𝐹:∪
dom 𝑀⟶∪ 𝐽
→ ran 𝐹 ⊆ ∪ 𝐽) |
31 | 29, 30 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → ran 𝐹 ⊆ ∪ 𝐽) |
32 | 31 | 3ad2ant1 1075 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺) → ran 𝐹 ⊆ ∪ 𝐽) |
33 | | simp2 1055 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺) → 𝑋 ∈ ran 𝐹) |
34 | 32, 33 | sseldd 3569 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺) → 𝑋 ∈ ∪ 𝐽) |
35 | | eqid 2610 |
. . . . . . . . . . 11
⊢ ∪ 𝐽 =
∪ 𝐽 |
36 | 35 | t1sncld 20940 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ Fre ∧ 𝑋 ∈ ∪ 𝐽)
→ {𝑋} ∈
(Clsd‘𝐽)) |
37 | 28, 34, 36 | syl2anc 691 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺) → {𝑋} ∈ (Clsd‘𝐽)) |
38 | 27, 37 | sseldd 3569 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺) → {𝑋} ∈ 𝑆) |
39 | 7, 12, 21, 38 | mbfmcnvima 29646 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺) → (◡𝐹 “ {𝑋}) ∈ dom 𝑀) |
40 | | sibfinima.g |
. . . . . . . . . 10
⊢ (𝜑 → 𝐺 ∈ dom (𝑊sitg𝑀)) |
41 | 13, 14, 8, 15, 16, 17, 18, 1, 40 | sibfmbl 29724 |
. . . . . . . . 9
⊢ (𝜑 → 𝐺 ∈ (dom 𝑀MblFnM𝑆)) |
42 | 41 | 3ad2ant1 1075 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺) → 𝐺 ∈ (dom 𝑀MblFnM𝑆)) |
43 | 13, 14, 8, 15, 16, 17, 18, 1, 40 | sibff 29725 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐺:∪ dom 𝑀⟶∪ 𝐽) |
44 | | frn 5966 |
. . . . . . . . . . . . 13
⊢ (𝐺:∪
dom 𝑀⟶∪ 𝐽
→ ran 𝐺 ⊆ ∪ 𝐽) |
45 | 43, 44 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → ran 𝐺 ⊆ ∪ 𝐽) |
46 | 45 | 3ad2ant1 1075 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺) → ran 𝐺 ⊆ ∪ 𝐽) |
47 | | simp3 1056 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺) → 𝑌 ∈ ran 𝐺) |
48 | 46, 47 | sseldd 3569 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺) → 𝑌 ∈ ∪ 𝐽) |
49 | 35 | t1sncld 20940 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ Fre ∧ 𝑌 ∈ ∪ 𝐽)
→ {𝑌} ∈
(Clsd‘𝐽)) |
50 | 28, 48, 49 | syl2anc 691 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺) → {𝑌} ∈ (Clsd‘𝐽)) |
51 | 27, 50 | sseldd 3569 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺) → {𝑌} ∈ 𝑆) |
52 | 7, 12, 42, 51 | mbfmcnvima 29646 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺) → (◡𝐺 “ {𝑌}) ∈ dom 𝑀) |
53 | | inelsiga 29525 |
. . . . . . 7
⊢ ((dom
𝑀 ∈ ∪ ran sigAlgebra ∧ (◡𝐹 “ {𝑋}) ∈ dom 𝑀 ∧ (◡𝐺 “ {𝑌}) ∈ dom 𝑀) → ((◡𝐹 “ {𝑋}) ∩ (◡𝐺 “ {𝑌})) ∈ dom 𝑀) |
54 | 7, 39, 52, 53 | syl3anc 1318 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺) → ((◡𝐹 “ {𝑋}) ∩ (◡𝐺 “ {𝑌})) ∈ dom 𝑀) |
55 | | measvxrge0 29595 |
. . . . . 6
⊢ ((𝑀 ∈ (measures‘dom
𝑀) ∧ ((◡𝐹 “ {𝑋}) ∩ (◡𝐺 “ {𝑌})) ∈ dom 𝑀) → (𝑀‘((◡𝐹 “ {𝑋}) ∩ (◡𝐺 “ {𝑌}))) ∈ (0[,]+∞)) |
56 | 4, 54, 55 | syl2anc 691 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺) → (𝑀‘((◡𝐹 “ {𝑋}) ∩ (◡𝐺 “ {𝑌}))) ∈ (0[,]+∞)) |
57 | | elxrge0 12152 |
. . . . . 6
⊢ ((𝑀‘((◡𝐹 “ {𝑋}) ∩ (◡𝐺 “ {𝑌}))) ∈ (0[,]+∞) ↔ ((𝑀‘((◡𝐹 “ {𝑋}) ∩ (◡𝐺 “ {𝑌}))) ∈ ℝ* ∧ 0 ≤
(𝑀‘((◡𝐹 “ {𝑋}) ∩ (◡𝐺 “ {𝑌}))))) |
58 | 57 | simplbi 475 |
. . . . 5
⊢ ((𝑀‘((◡𝐹 “ {𝑋}) ∩ (◡𝐺 “ {𝑌}))) ∈ (0[,]+∞) → (𝑀‘((◡𝐹 “ {𝑋}) ∩ (◡𝐺 “ {𝑌}))) ∈
ℝ*) |
59 | 56, 58 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺) → (𝑀‘((◡𝐹 “ {𝑋}) ∩ (◡𝐺 “ {𝑌}))) ∈
ℝ*) |
60 | 59 | adantr 480 |
. . 3
⊢ (((𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺) ∧ (𝑋 ≠ 0 ∨ 𝑌 ≠ 0 )) → (𝑀‘((◡𝐹 “ {𝑋}) ∩ (◡𝐺 “ {𝑌}))) ∈
ℝ*) |
61 | | 0re 9919 |
. . . 4
⊢ 0 ∈
ℝ |
62 | 61 | a1i 11 |
. . 3
⊢ (((𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺) ∧ (𝑋 ≠ 0 ∨ 𝑌 ≠ 0 )) → 0 ∈
ℝ) |
63 | 57 | simprbi 479 |
. . . . 5
⊢ ((𝑀‘((◡𝐹 “ {𝑋}) ∩ (◡𝐺 “ {𝑌}))) ∈ (0[,]+∞) → 0 ≤
(𝑀‘((◡𝐹 “ {𝑋}) ∩ (◡𝐺 “ {𝑌})))) |
64 | 56, 63 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺) → 0 ≤ (𝑀‘((◡𝐹 “ {𝑋}) ∩ (◡𝐺 “ {𝑌})))) |
65 | 64 | adantr 480 |
. . 3
⊢ (((𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺) ∧ (𝑋 ≠ 0 ∨ 𝑌 ≠ 0 )) → 0 ≤ (𝑀‘((◡𝐹 “ {𝑋}) ∩ (◡𝐺 “ {𝑌})))) |
66 | 59 | adantr 480 |
. . . . 5
⊢ (((𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺) ∧ 𝑋 ≠ 0 ) → (𝑀‘((◡𝐹 “ {𝑋}) ∩ (◡𝐺 “ {𝑌}))) ∈
ℝ*) |
67 | 4 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺) ∧ 𝑋 ≠ 0 ) → 𝑀 ∈ (measures‘dom 𝑀)) |
68 | 39 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺) ∧ 𝑋 ≠ 0 ) → (◡𝐹 “ {𝑋}) ∈ dom 𝑀) |
69 | | measvxrge0 29595 |
. . . . . . 7
⊢ ((𝑀 ∈ (measures‘dom
𝑀) ∧ (◡𝐹 “ {𝑋}) ∈ dom 𝑀) → (𝑀‘(◡𝐹 “ {𝑋})) ∈ (0[,]+∞)) |
70 | 67, 68, 69 | syl2anc 691 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺) ∧ 𝑋 ≠ 0 ) → (𝑀‘(◡𝐹 “ {𝑋})) ∈ (0[,]+∞)) |
71 | | elxrge0 12152 |
. . . . . . 7
⊢ ((𝑀‘(◡𝐹 “ {𝑋})) ∈ (0[,]+∞) ↔ ((𝑀‘(◡𝐹 “ {𝑋})) ∈ ℝ* ∧ 0 ≤
(𝑀‘(◡𝐹 “ {𝑋})))) |
72 | 71 | simplbi 475 |
. . . . . 6
⊢ ((𝑀‘(◡𝐹 “ {𝑋})) ∈ (0[,]+∞) → (𝑀‘(◡𝐹 “ {𝑋})) ∈
ℝ*) |
73 | 70, 72 | syl 17 |
. . . . 5
⊢ (((𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺) ∧ 𝑋 ≠ 0 ) → (𝑀‘(◡𝐹 “ {𝑋})) ∈
ℝ*) |
74 | | pnfxr 9971 |
. . . . . 6
⊢ +∞
∈ ℝ* |
75 | 74 | a1i 11 |
. . . . 5
⊢ (((𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺) ∧ 𝑋 ≠ 0 ) → +∞ ∈
ℝ*) |
76 | 54 | adantr 480 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺) ∧ 𝑋 ≠ 0 ) → ((◡𝐹 “ {𝑋}) ∩ (◡𝐺 “ {𝑌})) ∈ dom 𝑀) |
77 | | inss1 3795 |
. . . . . . 7
⊢ ((◡𝐹 “ {𝑋}) ∩ (◡𝐺 “ {𝑌})) ⊆ (◡𝐹 “ {𝑋}) |
78 | 77 | a1i 11 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺) ∧ 𝑋 ≠ 0 ) → ((◡𝐹 “ {𝑋}) ∩ (◡𝐺 “ {𝑌})) ⊆ (◡𝐹 “ {𝑋})) |
79 | 67, 76, 68, 78 | measssd 29605 |
. . . . 5
⊢ (((𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺) ∧ 𝑋 ≠ 0 ) → (𝑀‘((◡𝐹 “ {𝑋}) ∩ (◡𝐺 “ {𝑌}))) ≤ (𝑀‘(◡𝐹 “ {𝑋}))) |
80 | | simpl1 1057 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺) ∧ 𝑋 ≠ 0 ) → 𝜑) |
81 | 33 | anim1i 590 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺) ∧ 𝑋 ≠ 0 ) → (𝑋 ∈ ran 𝐹 ∧ 𝑋 ≠ 0 )) |
82 | | eldifsn 4260 |
. . . . . . . 8
⊢ (𝑋 ∈ (ran 𝐹 ∖ { 0 }) ↔ (𝑋 ∈ ran 𝐹 ∧ 𝑋 ≠ 0 )) |
83 | 81, 82 | sylibr 223 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺) ∧ 𝑋 ≠ 0 ) → 𝑋 ∈ (ran 𝐹 ∖ { 0 })) |
84 | 13, 14, 8, 15, 16, 17, 18, 1, 19 | sibfima 29727 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑋 ∈ (ran 𝐹 ∖ { 0 })) → (𝑀‘(◡𝐹 “ {𝑋})) ∈ (0[,)+∞)) |
85 | 80, 83, 84 | syl2anc 691 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺) ∧ 𝑋 ≠ 0 ) → (𝑀‘(◡𝐹 “ {𝑋})) ∈ (0[,)+∞)) |
86 | | elico2 12108 |
. . . . . . . 8
⊢ ((0
∈ ℝ ∧ +∞ ∈ ℝ*) → ((𝑀‘(◡𝐹 “ {𝑋})) ∈ (0[,)+∞) ↔ ((𝑀‘(◡𝐹 “ {𝑋})) ∈ ℝ ∧ 0 ≤ (𝑀‘(◡𝐹 “ {𝑋})) ∧ (𝑀‘(◡𝐹 “ {𝑋})) < +∞))) |
87 | 61, 74, 86 | mp2an 704 |
. . . . . . 7
⊢ ((𝑀‘(◡𝐹 “ {𝑋})) ∈ (0[,)+∞) ↔ ((𝑀‘(◡𝐹 “ {𝑋})) ∈ ℝ ∧ 0 ≤ (𝑀‘(◡𝐹 “ {𝑋})) ∧ (𝑀‘(◡𝐹 “ {𝑋})) < +∞)) |
88 | 87 | simp3bi 1071 |
. . . . . 6
⊢ ((𝑀‘(◡𝐹 “ {𝑋})) ∈ (0[,)+∞) → (𝑀‘(◡𝐹 “ {𝑋})) < +∞) |
89 | 85, 88 | syl 17 |
. . . . 5
⊢ (((𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺) ∧ 𝑋 ≠ 0 ) → (𝑀‘(◡𝐹 “ {𝑋})) < +∞) |
90 | 66, 73, 75, 79, 89 | xrlelttrd 11867 |
. . . 4
⊢ (((𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺) ∧ 𝑋 ≠ 0 ) → (𝑀‘((◡𝐹 “ {𝑋}) ∩ (◡𝐺 “ {𝑌}))) < +∞) |
91 | 59 | adantr 480 |
. . . . 5
⊢ (((𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺) ∧ 𝑌 ≠ 0 ) → (𝑀‘((◡𝐹 “ {𝑋}) ∩ (◡𝐺 “ {𝑌}))) ∈
ℝ*) |
92 | 4 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺) ∧ 𝑌 ≠ 0 ) → 𝑀 ∈ (measures‘dom 𝑀)) |
93 | 52 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺) ∧ 𝑌 ≠ 0 ) → (◡𝐺 “ {𝑌}) ∈ dom 𝑀) |
94 | | measvxrge0 29595 |
. . . . . . 7
⊢ ((𝑀 ∈ (measures‘dom
𝑀) ∧ (◡𝐺 “ {𝑌}) ∈ dom 𝑀) → (𝑀‘(◡𝐺 “ {𝑌})) ∈ (0[,]+∞)) |
95 | 92, 93, 94 | syl2anc 691 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺) ∧ 𝑌 ≠ 0 ) → (𝑀‘(◡𝐺 “ {𝑌})) ∈ (0[,]+∞)) |
96 | | elxrge0 12152 |
. . . . . . 7
⊢ ((𝑀‘(◡𝐺 “ {𝑌})) ∈ (0[,]+∞) ↔ ((𝑀‘(◡𝐺 “ {𝑌})) ∈ ℝ* ∧ 0 ≤
(𝑀‘(◡𝐺 “ {𝑌})))) |
97 | 96 | simplbi 475 |
. . . . . 6
⊢ ((𝑀‘(◡𝐺 “ {𝑌})) ∈ (0[,]+∞) → (𝑀‘(◡𝐺 “ {𝑌})) ∈
ℝ*) |
98 | 95, 97 | syl 17 |
. . . . 5
⊢ (((𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺) ∧ 𝑌 ≠ 0 ) → (𝑀‘(◡𝐺 “ {𝑌})) ∈
ℝ*) |
99 | 74 | a1i 11 |
. . . . 5
⊢ (((𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺) ∧ 𝑌 ≠ 0 ) → +∞ ∈
ℝ*) |
100 | 54 | adantr 480 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺) ∧ 𝑌 ≠ 0 ) → ((◡𝐹 “ {𝑋}) ∩ (◡𝐺 “ {𝑌})) ∈ dom 𝑀) |
101 | | inss2 3796 |
. . . . . . 7
⊢ ((◡𝐹 “ {𝑋}) ∩ (◡𝐺 “ {𝑌})) ⊆ (◡𝐺 “ {𝑌}) |
102 | 101 | a1i 11 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺) ∧ 𝑌 ≠ 0 ) → ((◡𝐹 “ {𝑋}) ∩ (◡𝐺 “ {𝑌})) ⊆ (◡𝐺 “ {𝑌})) |
103 | 92, 100, 93, 102 | measssd 29605 |
. . . . 5
⊢ (((𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺) ∧ 𝑌 ≠ 0 ) → (𝑀‘((◡𝐹 “ {𝑋}) ∩ (◡𝐺 “ {𝑌}))) ≤ (𝑀‘(◡𝐺 “ {𝑌}))) |
104 | | simpl1 1057 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺) ∧ 𝑌 ≠ 0 ) → 𝜑) |
105 | 47 | anim1i 590 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺) ∧ 𝑌 ≠ 0 ) → (𝑌 ∈ ran 𝐺 ∧ 𝑌 ≠ 0 )) |
106 | | eldifsn 4260 |
. . . . . . . 8
⊢ (𝑌 ∈ (ran 𝐺 ∖ { 0 }) ↔ (𝑌 ∈ ran 𝐺 ∧ 𝑌 ≠ 0 )) |
107 | 105, 106 | sylibr 223 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺) ∧ 𝑌 ≠ 0 ) → 𝑌 ∈ (ran 𝐺 ∖ { 0 })) |
108 | 13, 14, 8, 15, 16, 17, 18, 1, 40 | sibfima 29727 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑌 ∈ (ran 𝐺 ∖ { 0 })) → (𝑀‘(◡𝐺 “ {𝑌})) ∈ (0[,)+∞)) |
109 | 104, 107,
108 | syl2anc 691 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺) ∧ 𝑌 ≠ 0 ) → (𝑀‘(◡𝐺 “ {𝑌})) ∈ (0[,)+∞)) |
110 | | elico2 12108 |
. . . . . . . 8
⊢ ((0
∈ ℝ ∧ +∞ ∈ ℝ*) → ((𝑀‘(◡𝐺 “ {𝑌})) ∈ (0[,)+∞) ↔ ((𝑀‘(◡𝐺 “ {𝑌})) ∈ ℝ ∧ 0 ≤ (𝑀‘(◡𝐺 “ {𝑌})) ∧ (𝑀‘(◡𝐺 “ {𝑌})) < +∞))) |
111 | 61, 74, 110 | mp2an 704 |
. . . . . . 7
⊢ ((𝑀‘(◡𝐺 “ {𝑌})) ∈ (0[,)+∞) ↔ ((𝑀‘(◡𝐺 “ {𝑌})) ∈ ℝ ∧ 0 ≤ (𝑀‘(◡𝐺 “ {𝑌})) ∧ (𝑀‘(◡𝐺 “ {𝑌})) < +∞)) |
112 | 111 | simp3bi 1071 |
. . . . . 6
⊢ ((𝑀‘(◡𝐺 “ {𝑌})) ∈ (0[,)+∞) → (𝑀‘(◡𝐺 “ {𝑌})) < +∞) |
113 | 109, 112 | syl 17 |
. . . . 5
⊢ (((𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺) ∧ 𝑌 ≠ 0 ) → (𝑀‘(◡𝐺 “ {𝑌})) < +∞) |
114 | 91, 98, 99, 103, 113 | xrlelttrd 11867 |
. . . 4
⊢ (((𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺) ∧ 𝑌 ≠ 0 ) → (𝑀‘((◡𝐹 “ {𝑋}) ∩ (◡𝐺 “ {𝑌}))) < +∞) |
115 | 90, 114 | jaodan 822 |
. . 3
⊢ (((𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺) ∧ (𝑋 ≠ 0 ∨ 𝑌 ≠ 0 )) → (𝑀‘((◡𝐹 “ {𝑋}) ∩ (◡𝐺 “ {𝑌}))) < +∞) |
116 | | xrre3 11876 |
. . 3
⊢ ((((𝑀‘((◡𝐹 “ {𝑋}) ∩ (◡𝐺 “ {𝑌}))) ∈ ℝ* ∧ 0
∈ ℝ) ∧ (0 ≤ (𝑀‘((◡𝐹 “ {𝑋}) ∩ (◡𝐺 “ {𝑌}))) ∧ (𝑀‘((◡𝐹 “ {𝑋}) ∩ (◡𝐺 “ {𝑌}))) < +∞)) → (𝑀‘((◡𝐹 “ {𝑋}) ∩ (◡𝐺 “ {𝑌}))) ∈ ℝ) |
117 | 60, 62, 65, 115, 116 | syl22anc 1319 |
. 2
⊢ (((𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺) ∧ (𝑋 ≠ 0 ∨ 𝑌 ≠ 0 )) → (𝑀‘((◡𝐹 “ {𝑋}) ∩ (◡𝐺 “ {𝑌}))) ∈ ℝ) |
118 | | elico2 12108 |
. . 3
⊢ ((0
∈ ℝ ∧ +∞ ∈ ℝ*) → ((𝑀‘((◡𝐹 “ {𝑋}) ∩ (◡𝐺 “ {𝑌}))) ∈ (0[,)+∞) ↔ ((𝑀‘((◡𝐹 “ {𝑋}) ∩ (◡𝐺 “ {𝑌}))) ∈ ℝ ∧ 0 ≤ (𝑀‘((◡𝐹 “ {𝑋}) ∩ (◡𝐺 “ {𝑌}))) ∧ (𝑀‘((◡𝐹 “ {𝑋}) ∩ (◡𝐺 “ {𝑌}))) < +∞))) |
119 | 61, 74, 118 | mp2an 704 |
. 2
⊢ ((𝑀‘((◡𝐹 “ {𝑋}) ∩ (◡𝐺 “ {𝑌}))) ∈ (0[,)+∞) ↔ ((𝑀‘((◡𝐹 “ {𝑋}) ∩ (◡𝐺 “ {𝑌}))) ∈ ℝ ∧ 0 ≤ (𝑀‘((◡𝐹 “ {𝑋}) ∩ (◡𝐺 “ {𝑌}))) ∧ (𝑀‘((◡𝐹 “ {𝑋}) ∩ (◡𝐺 “ {𝑌}))) < +∞)) |
120 | 117, 65, 115, 119 | syl3anbrc 1239 |
1
⊢ (((𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺) ∧ (𝑋 ≠ 0 ∨ 𝑌 ≠ 0 )) → (𝑀‘((◡𝐹 “ {𝑋}) ∩ (◡𝐺 “ {𝑌}))) ∈ (0[,)+∞)) |