Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > t1sncld | Structured version Visualization version GIF version |
Description: In a T1 space, one-point sets are closed. (Contributed by Jeff Hankins, 1-Feb-2010.) |
Ref | Expression |
---|---|
ist0.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
t1sncld | ⊢ ((𝐽 ∈ Fre ∧ 𝐴 ∈ 𝑋) → {𝐴} ∈ (Clsd‘𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ist0.1 | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
2 | 1 | ist1 20935 | . . . 4 ⊢ (𝐽 ∈ Fre ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝑋 {𝑥} ∈ (Clsd‘𝐽))) |
3 | 2 | simprbi 479 | . . 3 ⊢ (𝐽 ∈ Fre → ∀𝑥 ∈ 𝑋 {𝑥} ∈ (Clsd‘𝐽)) |
4 | sneq 4135 | . . . . 5 ⊢ (𝑥 = 𝐴 → {𝑥} = {𝐴}) | |
5 | 4 | eleq1d 2672 | . . . 4 ⊢ (𝑥 = 𝐴 → ({𝑥} ∈ (Clsd‘𝐽) ↔ {𝐴} ∈ (Clsd‘𝐽))) |
6 | 5 | rspccv 3279 | . . 3 ⊢ (∀𝑥 ∈ 𝑋 {𝑥} ∈ (Clsd‘𝐽) → (𝐴 ∈ 𝑋 → {𝐴} ∈ (Clsd‘𝐽))) |
7 | 3, 6 | syl 17 | . 2 ⊢ (𝐽 ∈ Fre → (𝐴 ∈ 𝑋 → {𝐴} ∈ (Clsd‘𝐽))) |
8 | 7 | imp 444 | 1 ⊢ ((𝐽 ∈ Fre ∧ 𝐴 ∈ 𝑋) → {𝐴} ∈ (Clsd‘𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1475 ∈ wcel 1977 ∀wral 2896 {csn 4125 ∪ cuni 4372 ‘cfv 5804 Topctop 20517 Clsdccld 20630 Frect1 20921 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-iota 5768 df-fv 5812 df-t1 20928 |
This theorem is referenced by: cnt1 20964 lpcls 20978 sncld 20985 dnsconst 20992 t1conperf 21049 r0cld 21351 tgpt1 21731 sibfinima 29728 sibfof 29729 |
Copyright terms: Public domain | W3C validator |