Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sitgaddlemb Structured version   Visualization version   GIF version

 Description: Lemma for * sitgadd . (Contributed by Thierry Arnoux, 10-Mar-2019.)
Hypotheses
Ref Expression
sitgval.b 𝐵 = (Base‘𝑊)
sitgval.j 𝐽 = (TopOpen‘𝑊)
sitgval.s 𝑆 = (sigaGen‘𝐽)
sitgval.0 0 = (0g𝑊)
sitgval.x · = ( ·𝑠𝑊)
sitgval.h 𝐻 = (ℝHom‘(Scalar‘𝑊))
sitgval.1 (𝜑𝑊𝑉)
sitgval.2 (𝜑𝑀 ran measures)
sitgadd.2 (𝜑 → (𝑊v (𝐻 “ (0[,)+∞))) ∈ SLMod)
sitgadd.6 (𝜑 → (Scalar‘𝑊) ∈ ℝExt )
Assertion
Ref Expression
sitgaddlemb ((𝜑𝑝 ∈ ((ran 𝐹 × ran 𝐺) ∖ {⟨ 0 , 0 ⟩})) → ((𝐻‘(𝑀‘((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})))) · (2nd𝑝)) ∈ 𝐵)

StepHypRef Expression
1 sitgadd.2 . . 3 (𝜑 → (𝑊v (𝐻 “ (0[,)+∞))) ∈ SLMod)
21adantr 480 . 2 ((𝜑𝑝 ∈ ((ran 𝐹 × ran 𝐺) ∖ {⟨ 0 , 0 ⟩})) → (𝑊v (𝐻 “ (0[,)+∞))) ∈ SLMod)
3 simpl 472 . . . . 5 ((𝜑𝑝 ∈ ((ran 𝐹 × ran 𝐺) ∖ {⟨ 0 , 0 ⟩})) → 𝜑)
4 sitgadd.6 . . . . . . . 8 (𝜑 → (Scalar‘𝑊) ∈ ℝExt )
5 eqid 2610 . . . . . . . . 9 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
65rrhfe 29384 . . . . . . . 8 ((Scalar‘𝑊) ∈ ℝExt → (ℝHom‘(Scalar‘𝑊)):ℝ⟶(Base‘(Scalar‘𝑊)))
74, 6syl 17 . . . . . . 7 (𝜑 → (ℝHom‘(Scalar‘𝑊)):ℝ⟶(Base‘(Scalar‘𝑊)))
8 sitgval.h . . . . . . . 8 𝐻 = (ℝHom‘(Scalar‘𝑊))
98feq1i 5949 . . . . . . 7 (𝐻:ℝ⟶(Base‘(Scalar‘𝑊)) ↔ (ℝHom‘(Scalar‘𝑊)):ℝ⟶(Base‘(Scalar‘𝑊)))
107, 9sylibr 223 . . . . . 6 (𝜑𝐻:ℝ⟶(Base‘(Scalar‘𝑊)))
11 ffn 5958 . . . . . 6 (𝐻:ℝ⟶(Base‘(Scalar‘𝑊)) → 𝐻 Fn ℝ)
1210, 11syl 17 . . . . 5 (𝜑𝐻 Fn ℝ)
133, 12syl 17 . . . 4 ((𝜑𝑝 ∈ ((ran 𝐹 × ran 𝐺) ∖ {⟨ 0 , 0 ⟩})) → 𝐻 Fn ℝ)
14 rge0ssre 12151 . . . . 5 (0[,)+∞) ⊆ ℝ
1514a1i 11 . . . 4 ((𝜑𝑝 ∈ ((ran 𝐹 × ran 𝐺) ∖ {⟨ 0 , 0 ⟩})) → (0[,)+∞) ⊆ ℝ)
16 simpr 476 . . . . . . 7 ((𝜑𝑝 ∈ ((ran 𝐹 × ran 𝐺) ∖ {⟨ 0 , 0 ⟩})) → 𝑝 ∈ ((ran 𝐹 × ran 𝐺) ∖ {⟨ 0 , 0 ⟩}))
1716eldifad 3552 . . . . . 6 ((𝜑𝑝 ∈ ((ran 𝐹 × ran 𝐺) ∖ {⟨ 0 , 0 ⟩})) → 𝑝 ∈ (ran 𝐹 × ran 𝐺))
18 xp1st 7089 . . . . . 6 (𝑝 ∈ (ran 𝐹 × ran 𝐺) → (1st𝑝) ∈ ran 𝐹)
1917, 18syl 17 . . . . 5 ((𝜑𝑝 ∈ ((ran 𝐹 × ran 𝐺) ∖ {⟨ 0 , 0 ⟩})) → (1st𝑝) ∈ ran 𝐹)
20 xp2nd 7090 . . . . . 6 (𝑝 ∈ (ran 𝐹 × ran 𝐺) → (2nd𝑝) ∈ ran 𝐺)
2117, 20syl 17 . . . . 5 ((𝜑𝑝 ∈ ((ran 𝐹 × ran 𝐺) ∖ {⟨ 0 , 0 ⟩})) → (2nd𝑝) ∈ ran 𝐺)
2216eldifbd 3553 . . . . . . . 8 ((𝜑𝑝 ∈ ((ran 𝐹 × ran 𝐺) ∖ {⟨ 0 , 0 ⟩})) → ¬ 𝑝 ∈ {⟨ 0 , 0 ⟩})
23 velsn 4141 . . . . . . . . 9 (𝑝 ∈ {⟨ 0 , 0 ⟩} ↔ 𝑝 = ⟨ 0 , 0 ⟩)
2423notbii 309 . . . . . . . 8 𝑝 ∈ {⟨ 0 , 0 ⟩} ↔ ¬ 𝑝 = ⟨ 0 , 0 ⟩)
2522, 24sylib 207 . . . . . . 7 ((𝜑𝑝 ∈ ((ran 𝐹 × ran 𝐺) ∖ {⟨ 0 , 0 ⟩})) → ¬ 𝑝 = ⟨ 0 , 0 ⟩)
26 eqopi 7093 . . . . . . . . . 10 ((𝑝 ∈ (ran 𝐹 × ran 𝐺) ∧ ((1st𝑝) = 0 ∧ (2nd𝑝) = 0 )) → 𝑝 = ⟨ 0 , 0 ⟩)
2726ex 449 . . . . . . . . 9 (𝑝 ∈ (ran 𝐹 × ran 𝐺) → (((1st𝑝) = 0 ∧ (2nd𝑝) = 0 ) → 𝑝 = ⟨ 0 , 0 ⟩))
2827con3d 147 . . . . . . . 8 (𝑝 ∈ (ran 𝐹 × ran 𝐺) → (¬ 𝑝 = ⟨ 0 , 0 ⟩ → ¬ ((1st𝑝) = 0 ∧ (2nd𝑝) = 0 )))
2928imp 444 . . . . . . 7 ((𝑝 ∈ (ran 𝐹 × ran 𝐺) ∧ ¬ 𝑝 = ⟨ 0 , 0 ⟩) → ¬ ((1st𝑝) = 0 ∧ (2nd𝑝) = 0 ))
3017, 25, 29syl2anc 691 . . . . . 6 ((𝜑𝑝 ∈ ((ran 𝐹 × ran 𝐺) ∖ {⟨ 0 , 0 ⟩})) → ¬ ((1st𝑝) = 0 ∧ (2nd𝑝) = 0 ))
31 ianor 508 . . . . . . 7 (¬ ((1st𝑝) = 0 ∧ (2nd𝑝) = 0 ) ↔ (¬ (1st𝑝) = 0 ∨ ¬ (2nd𝑝) = 0 ))
32 df-ne 2782 . . . . . . . 8 ((1st𝑝) ≠ 0 ↔ ¬ (1st𝑝) = 0 )
33 df-ne 2782 . . . . . . . 8 ((2nd𝑝) ≠ 0 ↔ ¬ (2nd𝑝) = 0 )
3432, 33orbi12i 542 . . . . . . 7 (((1st𝑝) ≠ 0 ∨ (2nd𝑝) ≠ 0 ) ↔ (¬ (1st𝑝) = 0 ∨ ¬ (2nd𝑝) = 0 ))
3531, 34bitr4i 266 . . . . . 6 (¬ ((1st𝑝) = 0 ∧ (2nd𝑝) = 0 ) ↔ ((1st𝑝) ≠ 0 ∨ (2nd𝑝) ≠ 0 ))
3630, 35sylib 207 . . . . 5 ((𝜑𝑝 ∈ ((ran 𝐹 × ran 𝐺) ∖ {⟨ 0 , 0 ⟩})) → ((1st𝑝) ≠ 0 ∨ (2nd𝑝) ≠ 0 ))
37 sitgval.b . . . . . 6 𝐵 = (Base‘𝑊)
38 sitgval.j . . . . . 6 𝐽 = (TopOpen‘𝑊)
39 sitgval.s . . . . . 6 𝑆 = (sigaGen‘𝐽)
40 sitgval.0 . . . . . 6 0 = (0g𝑊)
41 sitgval.x . . . . . 6 · = ( ·𝑠𝑊)
42 sitgval.1 . . . . . 6 (𝜑𝑊𝑉)
43 sitgval.2 . . . . . 6 (𝜑𝑀 ran measures)
44 sitgadd.4 . . . . . 6 (𝜑𝐹 ∈ dom (𝑊sitg𝑀))
45 sitgadd.5 . . . . . 6 (𝜑𝐺 ∈ dom (𝑊sitg𝑀))
46 sitgadd.1 . . . . . 6 (𝜑𝑊 ∈ TopSp)
47 sitgadd.3 . . . . . 6 (𝜑𝐽 ∈ Fre)
4837, 38, 39, 40, 41, 8, 42, 43, 44, 45, 46, 47sibfinima 29728 . . . . 5 (((𝜑 ∧ (1st𝑝) ∈ ran 𝐹 ∧ (2nd𝑝) ∈ ran 𝐺) ∧ ((1st𝑝) ≠ 0 ∨ (2nd𝑝) ≠ 0 )) → (𝑀‘((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)}))) ∈ (0[,)+∞))
493, 19, 21, 36, 48syl31anc 1321 . . . 4 ((𝜑𝑝 ∈ ((ran 𝐹 × ran 𝐺) ∖ {⟨ 0 , 0 ⟩})) → (𝑀‘((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)}))) ∈ (0[,)+∞))
50 fnfvima 6400 . . . 4 ((𝐻 Fn ℝ ∧ (0[,)+∞) ⊆ ℝ ∧ (𝑀‘((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)}))) ∈ (0[,)+∞)) → (𝐻‘(𝑀‘((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})))) ∈ (𝐻 “ (0[,)+∞)))
5113, 15, 49, 50syl3anc 1318 . . 3 ((𝜑𝑝 ∈ ((ran 𝐹 × ran 𝐺) ∖ {⟨ 0 , 0 ⟩})) → (𝐻‘(𝑀‘((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})))) ∈ (𝐻 “ (0[,)+∞)))
52 imassrn 5396 . . . . . 6 (𝐻 “ (0[,)+∞)) ⊆ ran 𝐻
53 frn 5966 . . . . . . 7 (𝐻:ℝ⟶(Base‘(Scalar‘𝑊)) → ran 𝐻 ⊆ (Base‘(Scalar‘𝑊)))
5410, 53syl 17 . . . . . 6 (𝜑 → ran 𝐻 ⊆ (Base‘(Scalar‘𝑊)))
5552, 54syl5ss 3579 . . . . 5 (𝜑 → (𝐻 “ (0[,)+∞)) ⊆ (Base‘(Scalar‘𝑊)))
56 eqid 2610 . . . . . 6 ((Scalar‘𝑊) ↾s (𝐻 “ (0[,)+∞))) = ((Scalar‘𝑊) ↾s (𝐻 “ (0[,)+∞)))
5756, 5ressbas2 15758 . . . . 5 ((𝐻 “ (0[,)+∞)) ⊆ (Base‘(Scalar‘𝑊)) → (𝐻 “ (0[,)+∞)) = (Base‘((Scalar‘𝑊) ↾s (𝐻 “ (0[,)+∞)))))
5855, 57syl 17 . . . 4 (𝜑 → (𝐻 “ (0[,)+∞)) = (Base‘((Scalar‘𝑊) ↾s (𝐻 “ (0[,)+∞)))))
593, 58syl 17 . . 3 ((𝜑𝑝 ∈ ((ran 𝐹 × ran 𝐺) ∖ {⟨ 0 , 0 ⟩})) → (𝐻 “ (0[,)+∞)) = (Base‘((Scalar‘𝑊) ↾s (𝐻 “ (0[,)+∞)))))
6051, 59eleqtrd 2690 . 2 ((𝜑𝑝 ∈ ((ran 𝐹 × ran 𝐺) ∖ {⟨ 0 , 0 ⟩})) → (𝐻‘(𝑀‘((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})))) ∈ (Base‘((Scalar‘𝑊) ↾s (𝐻 “ (0[,)+∞)))))
6137, 38, 39, 40, 41, 8, 42, 43, 45sibff 29725 . . . . . 6 (𝜑𝐺: dom 𝑀 𝐽)
6237, 38tpsuni 20553 . . . . . . 7 (𝑊 ∈ TopSp → 𝐵 = 𝐽)
63 feq3 5941 . . . . . . 7 (𝐵 = 𝐽 → (𝐺: dom 𝑀𝐵𝐺: dom 𝑀 𝐽))
6446, 62, 633syl 18 . . . . . 6 (𝜑 → (𝐺: dom 𝑀𝐵𝐺: dom 𝑀 𝐽))
6561, 64mpbird 246 . . . . 5 (𝜑𝐺: dom 𝑀𝐵)
66 frn 5966 . . . . 5 (𝐺: dom 𝑀𝐵 → ran 𝐺𝐵)
6765, 66syl 17 . . . 4 (𝜑 → ran 𝐺𝐵)
6867adantr 480 . . 3 ((𝜑𝑝 ∈ ((ran 𝐹 × ran 𝐺) ∖ {⟨ 0 , 0 ⟩})) → ran 𝐺𝐵)
6968, 21sseldd 3569 . 2 ((𝜑𝑝 ∈ ((ran 𝐹 × ran 𝐺) ∖ {⟨ 0 , 0 ⟩})) → (2nd𝑝) ∈ 𝐵)
70 fvex 6113 . . . . 5 (ℝHom‘(Scalar‘𝑊)) ∈ V
718, 70eqeltri 2684 . . . 4 𝐻 ∈ V
72 imaexg 6995 . . . 4 (𝐻 ∈ V → (𝐻 “ (0[,)+∞)) ∈ V)
73 eqid 2610 . . . . 5 (𝑊v (𝐻 “ (0[,)+∞))) = (𝑊v (𝐻 “ (0[,)+∞)))
7473, 37resvbas 29163 . . . 4 ((𝐻 “ (0[,)+∞)) ∈ V → 𝐵 = (Base‘(𝑊v (𝐻 “ (0[,)+∞)))))
7571, 72, 74mp2b 10 . . 3 𝐵 = (Base‘(𝑊v (𝐻 “ (0[,)+∞))))
76 eqid 2610 . . . . 5 (Scalar‘𝑊) = (Scalar‘𝑊)
7773, 76, 5resvsca 29161 . . . 4 ((𝐻 “ (0[,)+∞)) ∈ V → ((Scalar‘𝑊) ↾s (𝐻 “ (0[,)+∞))) = (Scalar‘(𝑊v (𝐻 “ (0[,)+∞)))))
7871, 72, 77mp2b 10 . . 3 ((Scalar‘𝑊) ↾s (𝐻 “ (0[,)+∞))) = (Scalar‘(𝑊v (𝐻 “ (0[,)+∞))))
7973, 41resvvsca 29165 . . . 4 ((𝐻 “ (0[,)+∞)) ∈ V → · = ( ·𝑠 ‘(𝑊v (𝐻 “ (0[,)+∞)))))
8071, 72, 79mp2b 10 . . 3 · = ( ·𝑠 ‘(𝑊v (𝐻 “ (0[,)+∞))))
81 eqid 2610 . . 3 (Base‘((Scalar‘𝑊) ↾s (𝐻 “ (0[,)+∞)))) = (Base‘((Scalar‘𝑊) ↾s (𝐻 “ (0[,)+∞))))
8275, 78, 80, 81slmdvscl 29098 . 2 (((𝑊v (𝐻 “ (0[,)+∞))) ∈ SLMod ∧ (𝐻‘(𝑀‘((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})))) ∈ (Base‘((Scalar‘𝑊) ↾s (𝐻 “ (0[,)+∞)))) ∧ (2nd𝑝) ∈ 𝐵) → ((𝐻‘(𝑀‘((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})))) · (2nd𝑝)) ∈ 𝐵)
832, 60, 69, 82syl3anc 1318 1 ((𝜑𝑝 ∈ ((ran 𝐹 × ran 𝐺) ∖ {⟨ 0 , 0 ⟩})) → ((𝐻‘(𝑀‘((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})))) · (2nd𝑝)) ∈ 𝐵)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 195   ∨ wo 382   ∧ wa 383   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  Vcvv 3173   ∖ cdif 3537   ∩ cin 3539   ⊆ wss 3540  {csn 4125  ⟨cop 4131  ∪ cuni 4372   × cxp 5036  ◡ccnv 5037  dom cdm 5038  ran crn 5039   “ cima 5041   Fn wfn 5799  ⟶wf 5800  ‘cfv 5804  (class class class)co 6549  1st c1st 7057  2nd c2nd 7058  ℝcr 9814  0cc0 9815  +∞cpnf 9950  [,)cico 12048  Basecbs 15695   ↾s cress 15696  +gcplusg 15768  Scalarcsca 15771   ·𝑠 cvsca 15772  TopOpenctopn 15905  0gc0g 15923  TopSpctps 20519  Frect1 20921  SLModcslmd 29084   ↾v cresv 29155  ℝHomcrrh 29365   ℝExt crrext 29366  sigaGencsigagen 29528  measurescmeas 29585  sitgcsitg 29718 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-ac2 9168  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-disj 4554  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-tpos 7239  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-acn 8651  df-ac 8822  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265  df-ef 14637  df-sin 14639  df-cos 14640  df-pi 14642  df-dvds 14822  df-gcd 15055  df-numer 15281  df-denom 15282  df-gz 15472  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-ordt 15984  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-ps 17023  df-tsr 17024  df-plusf 17064  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-mhm 17158  df-submnd 17159  df-grp 17248  df-minusg 17249  df-sbg 17250  df-mulg 17364  df-subg 17414  df-ghm 17481  df-cntz 17573  df-od 17771  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-ring 18372  df-cring 18373  df-oppr 18446  df-dvdsr 18464  df-unit 18465  df-invr 18495  df-dvr 18506  df-rnghom 18538  df-drng 18572  df-subrg 18601  df-abv 18640  df-lmod 18688  df-scaf 18689  df-sra 18993  df-rgmod 18994  df-nzr 19079  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-metu 19566  df-cnfld 19568  df-zring 19638  df-zrh 19671  df-zlm 19672  df-chr 19673  df-refld 19770  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-t1 20928  df-haus 20929  df-reg 20930  df-cmp 21000  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-fcls 21555  df-cnext 21674  df-tmd 21686  df-tgp 21687  df-tsms 21740  df-trg 21773  df-ust 21814  df-utop 21845  df-uss 21870  df-usp 21871  df-ucn 21890  df-cfilu 21901  df-cusp 21912  df-xms 21935  df-ms 21936  df-tms 21937  df-nm 22197  df-ngp 22198  df-nrg 22200  df-nlm 22201  df-ii 22488  df-cncf 22489  df-cfil 22861  df-cmet 22863  df-cms 22940  df-limc 23436  df-dv 23437  df-log 24107  df-slmd 29085  df-resv 29156  df-qqh 29345  df-rrh 29367  df-rrext 29371  df-esum 29417  df-siga 29498  df-sigagen 29529  df-meas 29586  df-mbfm 29640  df-sitg 29719 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator