MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scmatmhm Structured version   Visualization version   GIF version

Theorem scmatmhm 20159
Description: There is a monoid homomorphism from the multiplicative group of a ring to the multiplicative group of the ring of scalar matrices over this ring. (Contributed by AV, 29-Dec-2019.)
Hypotheses
Ref Expression
scmatrhmval.k 𝐾 = (Base‘𝑅)
scmatrhmval.a 𝐴 = (𝑁 Mat 𝑅)
scmatrhmval.o 1 = (1r𝐴)
scmatrhmval.t = ( ·𝑠𝐴)
scmatrhmval.f 𝐹 = (𝑥𝐾 ↦ (𝑥 1 ))
scmatrhmval.c 𝐶 = (𝑁 ScMat 𝑅)
scmatghm.s 𝑆 = (𝐴s 𝐶)
scmatmhm.m 𝑀 = (mulGrp‘𝑅)
scmatmhm.t 𝑇 = (mulGrp‘𝑆)
Assertion
Ref Expression
scmatmhm ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐹 ∈ (𝑀 MndHom 𝑇))
Distinct variable groups:   𝑥,𝐾   𝑥,𝑅   𝑥, 1   𝑥,   𝑥,𝐶   𝑥,𝑁
Allowed substitution hints:   𝐴(𝑥)   𝑆(𝑥)   𝑇(𝑥)   𝐹(𝑥)   𝑀(𝑥)

Proof of Theorem scmatmhm
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 scmatmhm.m . . . . 5 𝑀 = (mulGrp‘𝑅)
21ringmgp 18376 . . . 4 (𝑅 ∈ Ring → 𝑀 ∈ Mnd)
32adantl 481 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑀 ∈ Mnd)
4 scmatrhmval.a . . . . 5 𝐴 = (𝑁 Mat 𝑅)
5 eqid 2610 . . . . 5 (Base‘𝐴) = (Base‘𝐴)
6 scmatrhmval.k . . . . 5 𝐾 = (Base‘𝑅)
7 eqid 2610 . . . . 5 (0g𝑅) = (0g𝑅)
8 scmatrhmval.c . . . . 5 𝐶 = (𝑁 ScMat 𝑅)
94, 5, 6, 7, 8scmatsrng 20145 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ (SubRing‘𝐴))
10 scmatghm.s . . . . 5 𝑆 = (𝐴s 𝐶)
1110subrgring 18606 . . . 4 (𝐶 ∈ (SubRing‘𝐴) → 𝑆 ∈ Ring)
12 scmatmhm.t . . . . 5 𝑇 = (mulGrp‘𝑆)
1312ringmgp 18376 . . . 4 (𝑆 ∈ Ring → 𝑇 ∈ Mnd)
149, 11, 133syl 18 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇 ∈ Mnd)
15 scmatrhmval.o . . . . . 6 1 = (1r𝐴)
16 scmatrhmval.t . . . . . 6 = ( ·𝑠𝐴)
17 scmatrhmval.f . . . . . 6 𝐹 = (𝑥𝐾 ↦ (𝑥 1 ))
186, 4, 15, 16, 17, 8scmatf 20154 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐹:𝐾𝐶)
194, 8, 10scmatstrbas 20151 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (Base‘𝑆) = 𝐶)
2019feq3d 5945 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝐹:𝐾⟶(Base‘𝑆) ↔ 𝐹:𝐾𝐶))
2118, 20mpbird 246 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐹:𝐾⟶(Base‘𝑆))
22 eqid 2610 . . . . . . . 8 (.r𝑅) = (.r𝑅)
23 eqid 2610 . . . . . . . 8 (.r𝐴) = (.r𝐴)
244, 6, 7, 15, 16, 22, 23scmatscmiddistr 20133 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → ((𝑦 1 )(.r𝐴)(𝑧 1 )) = ((𝑦(.r𝑅)𝑧) 1 ))
2510, 23ressmulr 15829 . . . . . . . . . 10 (𝐶 ∈ (SubRing‘𝐴) → (.r𝐴) = (.r𝑆))
269, 25syl 17 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (.r𝐴) = (.r𝑆))
2726adantr 480 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → (.r𝐴) = (.r𝑆))
2827oveqd 6566 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → ((𝑦 1 )(.r𝐴)(𝑧 1 )) = ((𝑦 1 )(.r𝑆)(𝑧 1 )))
2924, 28eqtr3d 2646 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → ((𝑦(.r𝑅)𝑧) 1 ) = ((𝑦 1 )(.r𝑆)(𝑧 1 )))
30 simpr 476 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑅 ∈ Ring)
3130adantr 480 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → 𝑅 ∈ Ring)
3230anim1i 590 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → (𝑅 ∈ Ring ∧ (𝑦𝐾𝑧𝐾)))
33 3anass 1035 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑦𝐾𝑧𝐾) ↔ (𝑅 ∈ Ring ∧ (𝑦𝐾𝑧𝐾)))
3432, 33sylibr 223 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → (𝑅 ∈ Ring ∧ 𝑦𝐾𝑧𝐾))
356, 22ringcl 18384 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑦𝐾𝑧𝐾) → (𝑦(.r𝑅)𝑧) ∈ 𝐾)
3634, 35syl 17 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → (𝑦(.r𝑅)𝑧) ∈ 𝐾)
376, 4, 15, 16, 17scmatrhmval 20152 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑦(.r𝑅)𝑧) ∈ 𝐾) → (𝐹‘(𝑦(.r𝑅)𝑧)) = ((𝑦(.r𝑅)𝑧) 1 ))
3831, 36, 37syl2anc 691 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → (𝐹‘(𝑦(.r𝑅)𝑧)) = ((𝑦(.r𝑅)𝑧) 1 ))
396, 4, 15, 16, 17scmatrhmval 20152 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑦𝐾) → (𝐹𝑦) = (𝑦 1 ))
4039ad2ant2lr 780 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → (𝐹𝑦) = (𝑦 1 ))
416, 4, 15, 16, 17scmatrhmval 20152 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑧𝐾) → (𝐹𝑧) = (𝑧 1 ))
4241ad2ant2l 778 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → (𝐹𝑧) = (𝑧 1 ))
4340, 42oveq12d 6567 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → ((𝐹𝑦)(.r𝑆)(𝐹𝑧)) = ((𝑦 1 )(.r𝑆)(𝑧 1 )))
4429, 38, 433eqtr4d 2654 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → (𝐹‘(𝑦(.r𝑅)𝑧)) = ((𝐹𝑦)(.r𝑆)(𝐹𝑧)))
4544ralrimivva 2954 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ∀𝑦𝐾𝑧𝐾 (𝐹‘(𝑦(.r𝑅)𝑧)) = ((𝐹𝑦)(.r𝑆)(𝐹𝑧)))
46 eqid 2610 . . . . . . . . 9 (1r𝑅) = (1r𝑅)
476, 46ringidcl 18391 . . . . . . . 8 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝐾)
4847adantl 481 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r𝑅) ∈ 𝐾)
496, 4, 15, 16, 17scmatrhmval 20152 . . . . . . 7 ((𝑅 ∈ Ring ∧ (1r𝑅) ∈ 𝐾) → (𝐹‘(1r𝑅)) = ((1r𝑅) 1 ))
5030, 48, 49syl2anc 691 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝐹‘(1r𝑅)) = ((1r𝑅) 1 ))
514matsca2 20045 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑅 = (Scalar‘𝐴))
5251fveq2d 6107 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r𝑅) = (1r‘(Scalar‘𝐴)))
5352oveq1d 6564 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((1r𝑅) 1 ) = ((1r‘(Scalar‘𝐴)) 1 ))
544matlmod 20054 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ LMod)
554matring 20068 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
565, 15ringidcl 18391 . . . . . . . . 9 (𝐴 ∈ Ring → 1 ∈ (Base‘𝐴))
5755, 56syl 17 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 1 ∈ (Base‘𝐴))
58 eqid 2610 . . . . . . . . 9 (Scalar‘𝐴) = (Scalar‘𝐴)
59 eqid 2610 . . . . . . . . 9 (1r‘(Scalar‘𝐴)) = (1r‘(Scalar‘𝐴))
605, 58, 16, 59lmodvs1 18714 . . . . . . . 8 ((𝐴 ∈ LMod ∧ 1 ∈ (Base‘𝐴)) → ((1r‘(Scalar‘𝐴)) 1 ) = 1 )
6154, 57, 60syl2anc 691 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((1r‘(Scalar‘𝐴)) 1 ) = 1 )
6253, 61eqtrd 2644 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((1r𝑅) 1 ) = 1 )
6350, 62eqtrd 2644 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝐹‘(1r𝑅)) = 1 )
6410, 15subrg1 18613 . . . . . 6 (𝐶 ∈ (SubRing‘𝐴) → 1 = (1r𝑆))
659, 64syl 17 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 1 = (1r𝑆))
6663, 65eqtrd 2644 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝐹‘(1r𝑅)) = (1r𝑆))
6721, 45, 663jca 1235 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝐹:𝐾⟶(Base‘𝑆) ∧ ∀𝑦𝐾𝑧𝐾 (𝐹‘(𝑦(.r𝑅)𝑧)) = ((𝐹𝑦)(.r𝑆)(𝐹𝑧)) ∧ (𝐹‘(1r𝑅)) = (1r𝑆)))
683, 14, 67jca31 555 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((𝑀 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝐹:𝐾⟶(Base‘𝑆) ∧ ∀𝑦𝐾𝑧𝐾 (𝐹‘(𝑦(.r𝑅)𝑧)) = ((𝐹𝑦)(.r𝑆)(𝐹𝑧)) ∧ (𝐹‘(1r𝑅)) = (1r𝑆))))
691, 6mgpbas 18318 . . 3 𝐾 = (Base‘𝑀)
70 eqid 2610 . . . 4 (Base‘𝑆) = (Base‘𝑆)
7112, 70mgpbas 18318 . . 3 (Base‘𝑆) = (Base‘𝑇)
721, 22mgpplusg 18316 . . 3 (.r𝑅) = (+g𝑀)
73 eqid 2610 . . . 4 (.r𝑆) = (.r𝑆)
7412, 73mgpplusg 18316 . . 3 (.r𝑆) = (+g𝑇)
751, 46ringidval 18326 . . 3 (1r𝑅) = (0g𝑀)
76 eqid 2610 . . . 4 (1r𝑆) = (1r𝑆)
7712, 76ringidval 18326 . . 3 (1r𝑆) = (0g𝑇)
7869, 71, 72, 74, 75, 77ismhm 17160 . 2 (𝐹 ∈ (𝑀 MndHom 𝑇) ↔ ((𝑀 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝐹:𝐾⟶(Base‘𝑆) ∧ ∀𝑦𝐾𝑧𝐾 (𝐹‘(𝑦(.r𝑅)𝑧)) = ((𝐹𝑦)(.r𝑆)(𝐹𝑧)) ∧ (𝐹‘(1r𝑅)) = (1r𝑆))))
7968, 78sylibr 223 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐹 ∈ (𝑀 MndHom 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  cmpt 4643  wf 5800  cfv 5804  (class class class)co 6549  Fincfn 7841  Basecbs 15695  s cress 15696  .rcmulr 15769  Scalarcsca 15771   ·𝑠 cvsca 15772  0gc0g 15923  Mndcmnd 17117   MndHom cmhm 17156  mulGrpcmgp 18312  1rcur 18324  Ringcrg 18370  SubRingcsubrg 18599  LModclmod 18686   Mat cmat 20032   ScMat cscmat 20114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-ot 4134  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-sup 8231  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-fz 12198  df-fzo 12335  df-seq 12664  df-hash 12980  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-hom 15793  df-cco 15794  df-0g 15925  df-gsum 15926  df-prds 15931  df-pws 15933  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-mhm 17158  df-submnd 17159  df-grp 17248  df-minusg 17249  df-sbg 17250  df-mulg 17364  df-subg 17414  df-ghm 17481  df-cntz 17573  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-ring 18372  df-subrg 18601  df-lmod 18688  df-lss 18754  df-sra 18993  df-rgmod 18994  df-dsmm 19895  df-frlm 19910  df-mamu 20009  df-mat 20033  df-dmat 20115  df-scmat 20116
This theorem is referenced by:  scmatrhm  20160
  Copyright terms: Public domain W3C validator