Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  qusghm Structured version   Visualization version   GIF version

Theorem qusghm 17520
 Description: If 𝑌 is a normal subgroup of 𝐺, then the "natural map" from elements to their cosets is a group homomorphism from 𝐺 to 𝐺 / 𝑌. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by Mario Carneiro, 18-Sep-2015.)
Hypotheses
Ref Expression
qusghm.x 𝑋 = (Base‘𝐺)
qusghm.h 𝐻 = (𝐺 /s (𝐺 ~QG 𝑌))
qusghm.f 𝐹 = (𝑥𝑋 ↦ [𝑥](𝐺 ~QG 𝑌))
Assertion
Ref Expression
qusghm (𝑌 ∈ (NrmSGrp‘𝐺) → 𝐹 ∈ (𝐺 GrpHom 𝐻))
Distinct variable groups:   𝑥,𝐺   𝑥,𝐻   𝑥,𝑋   𝑥,𝑌
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem qusghm
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qusghm.x . 2 𝑋 = (Base‘𝐺)
2 eqid 2610 . 2 (Base‘𝐻) = (Base‘𝐻)
3 eqid 2610 . 2 (+g𝐺) = (+g𝐺)
4 eqid 2610 . 2 (+g𝐻) = (+g𝐻)
5 nsgsubg 17449 . . 3 (𝑌 ∈ (NrmSGrp‘𝐺) → 𝑌 ∈ (SubGrp‘𝐺))
6 subgrcl 17422 . . 3 (𝑌 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
75, 6syl 17 . 2 (𝑌 ∈ (NrmSGrp‘𝐺) → 𝐺 ∈ Grp)
8 qusghm.h . . 3 𝐻 = (𝐺 /s (𝐺 ~QG 𝑌))
98qusgrp 17472 . 2 (𝑌 ∈ (NrmSGrp‘𝐺) → 𝐻 ∈ Grp)
108, 1, 2quseccl 17473 . . 3 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑥𝑋) → [𝑥](𝐺 ~QG 𝑌) ∈ (Base‘𝐻))
11 qusghm.f . . 3 𝐹 = (𝑥𝑋 ↦ [𝑥](𝐺 ~QG 𝑌))
1210, 11fmptd 6292 . 2 (𝑌 ∈ (NrmSGrp‘𝐺) → 𝐹:𝑋⟶(Base‘𝐻))
138, 1, 3, 4qusadd 17474 . . . 4 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑦𝑋𝑧𝑋) → ([𝑦](𝐺 ~QG 𝑌)(+g𝐻)[𝑧](𝐺 ~QG 𝑌)) = [(𝑦(+g𝐺)𝑧)](𝐺 ~QG 𝑌))
14133expb 1258 . . 3 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝑦𝑋𝑧𝑋)) → ([𝑦](𝐺 ~QG 𝑌)(+g𝐻)[𝑧](𝐺 ~QG 𝑌)) = [(𝑦(+g𝐺)𝑧)](𝐺 ~QG 𝑌))
15 eceq1 7669 . . . . . 6 (𝑥 = 𝑦 → [𝑥](𝐺 ~QG 𝑌) = [𝑦](𝐺 ~QG 𝑌))
16 ovex 6577 . . . . . . 7 (𝐺 ~QG 𝑌) ∈ V
17 ecexg 7633 . . . . . . 7 ((𝐺 ~QG 𝑌) ∈ V → [𝑥](𝐺 ~QG 𝑌) ∈ V)
1816, 17ax-mp 5 . . . . . 6 [𝑥](𝐺 ~QG 𝑌) ∈ V
1915, 11, 18fvmpt3i 6196 . . . . 5 (𝑦𝑋 → (𝐹𝑦) = [𝑦](𝐺 ~QG 𝑌))
2019ad2antrl 760 . . . 4 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝑦𝑋𝑧𝑋)) → (𝐹𝑦) = [𝑦](𝐺 ~QG 𝑌))
21 eceq1 7669 . . . . . 6 (𝑥 = 𝑧 → [𝑥](𝐺 ~QG 𝑌) = [𝑧](𝐺 ~QG 𝑌))
2221, 11, 18fvmpt3i 6196 . . . . 5 (𝑧𝑋 → (𝐹𝑧) = [𝑧](𝐺 ~QG 𝑌))
2322ad2antll 761 . . . 4 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝑦𝑋𝑧𝑋)) → (𝐹𝑧) = [𝑧](𝐺 ~QG 𝑌))
2420, 23oveq12d 6567 . . 3 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝑦𝑋𝑧𝑋)) → ((𝐹𝑦)(+g𝐻)(𝐹𝑧)) = ([𝑦](𝐺 ~QG 𝑌)(+g𝐻)[𝑧](𝐺 ~QG 𝑌)))
251, 3grpcl 17253 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑦𝑋𝑧𝑋) → (𝑦(+g𝐺)𝑧) ∈ 𝑋)
26253expb 1258 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑦𝑋𝑧𝑋)) → (𝑦(+g𝐺)𝑧) ∈ 𝑋)
277, 26sylan 487 . . . 4 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝑦𝑋𝑧𝑋)) → (𝑦(+g𝐺)𝑧) ∈ 𝑋)
28 eceq1 7669 . . . . 5 (𝑥 = (𝑦(+g𝐺)𝑧) → [𝑥](𝐺 ~QG 𝑌) = [(𝑦(+g𝐺)𝑧)](𝐺 ~QG 𝑌))
2928, 11, 18fvmpt3i 6196 . . . 4 ((𝑦(+g𝐺)𝑧) ∈ 𝑋 → (𝐹‘(𝑦(+g𝐺)𝑧)) = [(𝑦(+g𝐺)𝑧)](𝐺 ~QG 𝑌))
3027, 29syl 17 . . 3 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝑦𝑋𝑧𝑋)) → (𝐹‘(𝑦(+g𝐺)𝑧)) = [(𝑦(+g𝐺)𝑧)](𝐺 ~QG 𝑌))
3114, 24, 303eqtr4rd 2655 . 2 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝑦𝑋𝑧𝑋)) → (𝐹‘(𝑦(+g𝐺)𝑧)) = ((𝐹𝑦)(+g𝐻)(𝐹𝑧)))
321, 2, 3, 4, 7, 9, 12, 31isghmd 17492 1 (𝑌 ∈ (NrmSGrp‘𝐺) → 𝐹 ∈ (𝐺 GrpHom 𝐻))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977  Vcvv 3173   ↦ cmpt 4643  ‘cfv 5804  (class class class)co 6549  [cec 7627  Basecbs 15695  +gcplusg 15768   /s cqus 15988  Grpcgrp 17245  SubGrpcsubg 17411  NrmSGrpcnsg 17412   ~QG cqg 17413   GrpHom cghm 17480 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-ec 7631  df-qs 7635  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-fz 12198  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-0g 15925  df-imas 15991  df-qus 15992  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-minusg 17249  df-subg 17414  df-nsg 17415  df-eqg 17416  df-ghm 17481 This theorem is referenced by:  qusrhm  19058
 Copyright terms: Public domain W3C validator