Step | Hyp | Ref
| Expression |
1 | | qusrhm.x |
. 2
⊢ 𝑋 = (Base‘𝑅) |
2 | | eqid 2610 |
. 2
⊢
(1r‘𝑅) = (1r‘𝑅) |
3 | | eqid 2610 |
. 2
⊢
(1r‘𝑈) = (1r‘𝑈) |
4 | | eqid 2610 |
. 2
⊢
(.r‘𝑅) = (.r‘𝑅) |
5 | | eqid 2610 |
. 2
⊢
(.r‘𝑈) = (.r‘𝑈) |
6 | | simpl 472 |
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → 𝑅 ∈ Ring) |
7 | | qusring.u |
. . 3
⊢ 𝑈 = (𝑅 /s (𝑅 ~QG 𝑆)) |
8 | | qusring.i |
. . 3
⊢ 𝐼 = (2Ideal‘𝑅) |
9 | 7, 8 | qusring 19057 |
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → 𝑈 ∈ Ring) |
10 | | eqid 2610 |
. . . . . . . . 9
⊢
(LIdeal‘𝑅) =
(LIdeal‘𝑅) |
11 | | eqid 2610 |
. . . . . . . . 9
⊢
(oppr‘𝑅) = (oppr‘𝑅) |
12 | | eqid 2610 |
. . . . . . . . 9
⊢
(LIdeal‘(oppr‘𝑅)) =
(LIdeal‘(oppr‘𝑅)) |
13 | 10, 11, 12, 8 | 2idlval 19054 |
. . . . . . . 8
⊢ 𝐼 = ((LIdeal‘𝑅) ∩
(LIdeal‘(oppr‘𝑅))) |
14 | 13 | elin2 3763 |
. . . . . . 7
⊢ (𝑆 ∈ 𝐼 ↔ (𝑆 ∈ (LIdeal‘𝑅) ∧ 𝑆 ∈
(LIdeal‘(oppr‘𝑅)))) |
15 | 14 | simplbi 475 |
. . . . . 6
⊢ (𝑆 ∈ 𝐼 → 𝑆 ∈ (LIdeal‘𝑅)) |
16 | 10 | lidlsubg 19036 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ (LIdeal‘𝑅)) → 𝑆 ∈ (SubGrp‘𝑅)) |
17 | 15, 16 | sylan2 490 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → 𝑆 ∈ (SubGrp‘𝑅)) |
18 | | eqid 2610 |
. . . . . 6
⊢ (𝑅 ~QG 𝑆) = (𝑅 ~QG 𝑆) |
19 | 1, 18 | eqger 17467 |
. . . . 5
⊢ (𝑆 ∈ (SubGrp‘𝑅) → (𝑅 ~QG 𝑆) Er 𝑋) |
20 | 17, 19 | syl 17 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → (𝑅 ~QG 𝑆) Er 𝑋) |
21 | | fvex 6113 |
. . . . . 6
⊢
(Base‘𝑅)
∈ V |
22 | 1, 21 | eqeltri 2684 |
. . . . 5
⊢ 𝑋 ∈ V |
23 | 22 | a1i 11 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → 𝑋 ∈ V) |
24 | | qusrhm.f |
. . . 4
⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ [𝑥](𝑅 ~QG 𝑆)) |
25 | 20, 23, 24 | divsfval 16030 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → (𝐹‘(1r‘𝑅)) = [(1r‘𝑅)](𝑅 ~QG 𝑆)) |
26 | 7, 8, 2 | qus1 19056 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → (𝑈 ∈ Ring ∧
[(1r‘𝑅)](𝑅 ~QG 𝑆) = (1r‘𝑈))) |
27 | 26 | simprd 478 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → [(1r‘𝑅)](𝑅 ~QG 𝑆) = (1r‘𝑈)) |
28 | 25, 27 | eqtrd 2644 |
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → (𝐹‘(1r‘𝑅)) = (1r‘𝑈)) |
29 | 7 | a1i 11 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → 𝑈 = (𝑅 /s (𝑅 ~QG 𝑆))) |
30 | 1 | a1i 11 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → 𝑋 = (Base‘𝑅)) |
31 | 1, 18, 8, 4 | 2idlcpbl 19055 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → ((𝑎(𝑅 ~QG 𝑆)𝑐 ∧ 𝑏(𝑅 ~QG 𝑆)𝑑) → (𝑎(.r‘𝑅)𝑏)(𝑅 ~QG 𝑆)(𝑐(.r‘𝑅)𝑑))) |
32 | 1, 4 | ringcl 18384 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋) → (𝑦(.r‘𝑅)𝑧) ∈ 𝑋) |
33 | 32 | 3expb 1258 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑦(.r‘𝑅)𝑧) ∈ 𝑋) |
34 | 33 | adantlr 747 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑦(.r‘𝑅)𝑧) ∈ 𝑋) |
35 | 34 | caovclg 6724 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝑐 ∈ 𝑋 ∧ 𝑑 ∈ 𝑋)) → (𝑐(.r‘𝑅)𝑑) ∈ 𝑋) |
36 | 29, 30, 20, 6, 31, 35, 4, 5 | qusmulval 16038 |
. . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋) → ([𝑦](𝑅 ~QG 𝑆)(.r‘𝑈)[𝑧](𝑅 ~QG 𝑆)) = [(𝑦(.r‘𝑅)𝑧)](𝑅 ~QG 𝑆)) |
37 | 36 | 3expb 1258 |
. . 3
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → ([𝑦](𝑅 ~QG 𝑆)(.r‘𝑈)[𝑧](𝑅 ~QG 𝑆)) = [(𝑦(.r‘𝑅)𝑧)](𝑅 ~QG 𝑆)) |
38 | 20 | adantr 480 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑅 ~QG 𝑆) Er 𝑋) |
39 | 22 | a1i 11 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → 𝑋 ∈ V) |
40 | 38, 39, 24 | divsfval 16030 |
. . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝐹‘𝑦) = [𝑦](𝑅 ~QG 𝑆)) |
41 | 38, 39, 24 | divsfval 16030 |
. . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝐹‘𝑧) = [𝑧](𝑅 ~QG 𝑆)) |
42 | 40, 41 | oveq12d 6567 |
. . 3
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → ((𝐹‘𝑦)(.r‘𝑈)(𝐹‘𝑧)) = ([𝑦](𝑅 ~QG 𝑆)(.r‘𝑈)[𝑧](𝑅 ~QG 𝑆))) |
43 | 38, 39, 24 | divsfval 16030 |
. . 3
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝐹‘(𝑦(.r‘𝑅)𝑧)) = [(𝑦(.r‘𝑅)𝑧)](𝑅 ~QG 𝑆)) |
44 | 37, 42, 43 | 3eqtr4rd 2655 |
. 2
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝐹‘(𝑦(.r‘𝑅)𝑧)) = ((𝐹‘𝑦)(.r‘𝑈)(𝐹‘𝑧))) |
45 | | ringabl 18403 |
. . . . . 6
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Abel) |
46 | 45 | adantr 480 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → 𝑅 ∈ Abel) |
47 | | ablnsg 18073 |
. . . . 5
⊢ (𝑅 ∈ Abel →
(NrmSGrp‘𝑅) =
(SubGrp‘𝑅)) |
48 | 46, 47 | syl 17 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → (NrmSGrp‘𝑅) = (SubGrp‘𝑅)) |
49 | 17, 48 | eleqtrrd 2691 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → 𝑆 ∈ (NrmSGrp‘𝑅)) |
50 | 1, 7, 24 | qusghm 17520 |
. . 3
⊢ (𝑆 ∈ (NrmSGrp‘𝑅) → 𝐹 ∈ (𝑅 GrpHom 𝑈)) |
51 | 49, 50 | syl 17 |
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → 𝐹 ∈ (𝑅 GrpHom 𝑈)) |
52 | 1, 2, 3, 4, 5, 6, 9, 28, 44, 51 | isrhm2d 18551 |
1
⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → 𝐹 ∈ (𝑅 RingHom 𝑈)) |