Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > conjnsg | Structured version Visualization version GIF version |
Description: A normal subgroup is unchanged under conjugation. (Contributed by Mario Carneiro, 18-Jan-2015.) |
Ref | Expression |
---|---|
conjghm.x | ⊢ 𝑋 = (Base‘𝐺) |
conjghm.p | ⊢ + = (+g‘𝐺) |
conjghm.m | ⊢ − = (-g‘𝐺) |
conjsubg.f | ⊢ 𝐹 = (𝑥 ∈ 𝑆 ↦ ((𝐴 + 𝑥) − 𝐴)) |
Ref | Expression |
---|---|
conjnsg | ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴 ∈ 𝑋) → 𝑆 = ran 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2610 | . . . . . 6 ⊢ {𝑦 ∈ 𝑋 ∣ ∀𝑧 ∈ 𝑋 ((𝑦 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝑦) ∈ 𝑆)} = {𝑦 ∈ 𝑋 ∣ ∀𝑧 ∈ 𝑋 ((𝑦 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝑦) ∈ 𝑆)} | |
2 | conjghm.x | . . . . . 6 ⊢ 𝑋 = (Base‘𝐺) | |
3 | conjghm.p | . . . . . 6 ⊢ + = (+g‘𝐺) | |
4 | 1, 2, 3 | isnsg4 17460 | . . . . 5 ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ {𝑦 ∈ 𝑋 ∣ ∀𝑧 ∈ 𝑋 ((𝑦 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝑦) ∈ 𝑆)} = 𝑋)) |
5 | 4 | simprbi 479 | . . . 4 ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → {𝑦 ∈ 𝑋 ∣ ∀𝑧 ∈ 𝑋 ((𝑦 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝑦) ∈ 𝑆)} = 𝑋) |
6 | 5 | eleq2d 2673 | . . 3 ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → (𝐴 ∈ {𝑦 ∈ 𝑋 ∣ ∀𝑧 ∈ 𝑋 ((𝑦 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝑦) ∈ 𝑆)} ↔ 𝐴 ∈ 𝑋)) |
7 | 6 | biimpar 501 | . 2 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ {𝑦 ∈ 𝑋 ∣ ∀𝑧 ∈ 𝑋 ((𝑦 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝑦) ∈ 𝑆)}) |
8 | nsgsubg 17449 | . . 3 ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺)) | |
9 | conjghm.m | . . . 4 ⊢ − = (-g‘𝐺) | |
10 | conjsubg.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝑆 ↦ ((𝐴 + 𝑥) − 𝐴)) | |
11 | 2, 3, 9, 10, 1 | conjnmz 17517 | . . 3 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ {𝑦 ∈ 𝑋 ∣ ∀𝑧 ∈ 𝑋 ((𝑦 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝑦) ∈ 𝑆)}) → 𝑆 = ran 𝐹) |
12 | 8, 11 | sylan 487 | . 2 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴 ∈ {𝑦 ∈ 𝑋 ∣ ∀𝑧 ∈ 𝑋 ((𝑦 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝑦) ∈ 𝑆)}) → 𝑆 = ran 𝐹) |
13 | 7, 12 | syldan 486 | 1 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴 ∈ 𝑋) → 𝑆 = ran 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∧ wa 383 = wceq 1475 ∈ wcel 1977 ∀wral 2896 {crab 2900 ↦ cmpt 4643 ran crn 5039 ‘cfv 5804 (class class class)co 6549 Basecbs 15695 +gcplusg 15768 -gcsg 17247 SubGrpcsubg 17411 NrmSGrpcnsg 17412 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-1st 7059 df-2nd 7060 df-0g 15925 df-mgm 17065 df-sgrp 17107 df-mnd 17118 df-grp 17248 df-minusg 17249 df-sbg 17250 df-subg 17414 df-nsg 17415 |
This theorem is referenced by: sylow3lem6 17870 |
Copyright terms: Public domain | W3C validator |