Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  qaddcl Structured version   Visualization version   GIF version

 Description: Closure of addition of rationals. (Contributed by NM, 1-Aug-2004.)
Assertion
Ref Expression
qaddcl ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐴 + 𝐵) ∈ ℚ)

Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elq 11666 . 2 (𝐴 ∈ ℚ ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦))
2 elq 11666 . 2 (𝐵 ∈ ℚ ↔ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℕ 𝐵 = (𝑧 / 𝑤))
3 nnz 11276 . . . . . . . . . . . 12 (𝑤 ∈ ℕ → 𝑤 ∈ ℤ)
4 zmulcl 11303 . . . . . . . . . . . 12 ((𝑥 ∈ ℤ ∧ 𝑤 ∈ ℤ) → (𝑥 · 𝑤) ∈ ℤ)
53, 4sylan2 490 . . . . . . . . . . 11 ((𝑥 ∈ ℤ ∧ 𝑤 ∈ ℕ) → (𝑥 · 𝑤) ∈ ℤ)
65ad2ant2rl 781 . . . . . . . . . 10 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) → (𝑥 · 𝑤) ∈ ℤ)
7 simpl 472 . . . . . . . . . . 11 ((𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ) → 𝑧 ∈ ℤ)
8 nnz 11276 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → 𝑦 ∈ ℤ)
98adantl 481 . . . . . . . . . . 11 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → 𝑦 ∈ ℤ)
10 zmulcl 11303 . . . . . . . . . . 11 ((𝑧 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑧 · 𝑦) ∈ ℤ)
117, 9, 10syl2anr 494 . . . . . . . . . 10 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) → (𝑧 · 𝑦) ∈ ℤ)
126, 11zaddcld 11362 . . . . . . . . 9 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) → ((𝑥 · 𝑤) + (𝑧 · 𝑦)) ∈ ℤ)
1312adantr 480 . . . . . . . 8 ((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤))) → ((𝑥 · 𝑤) + (𝑧 · 𝑦)) ∈ ℤ)
14 nnmulcl 10920 . . . . . . . . . 10 ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) → (𝑦 · 𝑤) ∈ ℕ)
1514ad2ant2l 778 . . . . . . . . 9 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) → (𝑦 · 𝑤) ∈ ℕ)
1615adantr 480 . . . . . . . 8 ((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤))) → (𝑦 · 𝑤) ∈ ℕ)
17 oveq12 6558 . . . . . . . . 9 ((𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)) → (𝐴 + 𝐵) = ((𝑥 / 𝑦) + (𝑧 / 𝑤)))
18 zcn 11259 . . . . . . . . . . . 12 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
19 zcn 11259 . . . . . . . . . . . 12 (𝑧 ∈ ℤ → 𝑧 ∈ ℂ)
2018, 19anim12i 588 . . . . . . . . . . 11 ((𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ))
21 nncn 10905 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
22 nnne0 10930 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → 𝑦 ≠ 0)
2321, 22jca 553 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0))
24 nncn 10905 . . . . . . . . . . . . 13 (𝑤 ∈ ℕ → 𝑤 ∈ ℂ)
25 nnne0 10930 . . . . . . . . . . . . 13 (𝑤 ∈ ℕ → 𝑤 ≠ 0)
2624, 25jca 553 . . . . . . . . . . . 12 (𝑤 ∈ ℕ → (𝑤 ∈ ℂ ∧ 𝑤 ≠ 0))
2723, 26anim12i 588 . . . . . . . . . . 11 ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) → ((𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) ∧ (𝑤 ∈ ℂ ∧ 𝑤 ≠ 0)))
28 divadddiv 10619 . . . . . . . . . . 11 (((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ ((𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) ∧ (𝑤 ∈ ℂ ∧ 𝑤 ≠ 0))) → ((𝑥 / 𝑦) + (𝑧 / 𝑤)) = (((𝑥 · 𝑤) + (𝑧 · 𝑦)) / (𝑦 · 𝑤)))
2920, 27, 28syl2an 493 . . . . . . . . . 10 (((𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → ((𝑥 / 𝑦) + (𝑧 / 𝑤)) = (((𝑥 · 𝑤) + (𝑧 · 𝑦)) / (𝑦 · 𝑤)))
3029an4s 865 . . . . . . . . 9 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) → ((𝑥 / 𝑦) + (𝑧 / 𝑤)) = (((𝑥 · 𝑤) + (𝑧 · 𝑦)) / (𝑦 · 𝑤)))
3117, 30sylan9eqr 2666 . . . . . . . 8 ((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤))) → (𝐴 + 𝐵) = (((𝑥 · 𝑤) + (𝑧 · 𝑦)) / (𝑦 · 𝑤)))
32 rspceov 6590 . . . . . . . . 9 ((((𝑥 · 𝑤) + (𝑧 · 𝑦)) ∈ ℤ ∧ (𝑦 · 𝑤) ∈ ℕ ∧ (𝐴 + 𝐵) = (((𝑥 · 𝑤) + (𝑧 · 𝑦)) / (𝑦 · 𝑤))) → ∃𝑢 ∈ ℤ ∃𝑣 ∈ ℕ (𝐴 + 𝐵) = (𝑢 / 𝑣))
33 elq 11666 . . . . . . . . 9 ((𝐴 + 𝐵) ∈ ℚ ↔ ∃𝑢 ∈ ℤ ∃𝑣 ∈ ℕ (𝐴 + 𝐵) = (𝑢 / 𝑣))
3432, 33sylibr 223 . . . . . . . 8 ((((𝑥 · 𝑤) + (𝑧 · 𝑦)) ∈ ℤ ∧ (𝑦 · 𝑤) ∈ ℕ ∧ (𝐴 + 𝐵) = (((𝑥 · 𝑤) + (𝑧 · 𝑦)) / (𝑦 · 𝑤))) → (𝐴 + 𝐵) ∈ ℚ)
3513, 16, 31, 34syl3anc 1318 . . . . . . 7 ((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤))) → (𝐴 + 𝐵) ∈ ℚ)
3635an4s 865 . . . . . 6 ((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝐴 = (𝑥 / 𝑦)) ∧ ((𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ) ∧ 𝐵 = (𝑧 / 𝑤))) → (𝐴 + 𝐵) ∈ ℚ)
3736exp43 638 . . . . 5 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝐴 = (𝑥 / 𝑦) → ((𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ) → (𝐵 = (𝑧 / 𝑤) → (𝐴 + 𝐵) ∈ ℚ))))
3837rexlimivv 3018 . . . 4 (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦) → ((𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ) → (𝐵 = (𝑧 / 𝑤) → (𝐴 + 𝐵) ∈ ℚ)))
3938rexlimdvv 3019 . . 3 (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦) → (∃𝑧 ∈ ℤ ∃𝑤 ∈ ℕ 𝐵 = (𝑧 / 𝑤) → (𝐴 + 𝐵) ∈ ℚ))
4039imp 444 . 2 ((∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦) ∧ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℕ 𝐵 = (𝑧 / 𝑤)) → (𝐴 + 𝐵) ∈ ℚ)
411, 2, 40syl2anb 495 1 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐴 + 𝐵) ∈ ℚ)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  ∃wrex 2897  (class class class)co 6549  ℂcc 9813  0cc0 9815   + caddc 9818   · cmul 9820   / cdiv 10563  ℕcn 10897  ℤcz 11254  ℚcq 11664 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-n0 11170  df-z 11255  df-q 11665 This theorem is referenced by:  qsubcl  11683  qrevaddcl  11686  pcaddlem  15430  pcadd2  15432  qsubdrg  19617  vitalilem1  23182  vitalilem1OLD  23183  qaa  23882  padicabv  25119  ostth3  25127  mblfinlem1  32616  rmxyadd  36504  mpaaeu  36739  aacllem  42356
 Copyright terms: Public domain W3C validator