MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcadd2 Structured version   Visualization version   GIF version

Theorem pcadd2 15432
Description: The inequality of pcadd 15431 becomes an equality when one of the factors has prime count strictly less than the other. (Contributed by Mario Carneiro, 16-Jan-2015.) (Revised by Mario Carneiro, 26-Jun-2015.)
Hypotheses
Ref Expression
pcadd2.1 (𝜑𝑃 ∈ ℙ)
pcadd2.2 (𝜑𝐴 ∈ ℚ)
pcadd2.3 (𝜑𝐵 ∈ ℚ)
pcadd2.4 (𝜑 → (𝑃 pCnt 𝐴) < (𝑃 pCnt 𝐵))
Assertion
Ref Expression
pcadd2 (𝜑 → (𝑃 pCnt 𝐴) = (𝑃 pCnt (𝐴 + 𝐵)))

Proof of Theorem pcadd2
StepHypRef Expression
1 pcadd2.1 . . 3 (𝜑𝑃 ∈ ℙ)
2 pcadd2.2 . . 3 (𝜑𝐴 ∈ ℚ)
3 pcadd2.3 . . 3 (𝜑𝐵 ∈ ℚ)
4 pcadd2.4 . . . 4 (𝜑 → (𝑃 pCnt 𝐴) < (𝑃 pCnt 𝐵))
5 pcxcl 15403 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℚ) → (𝑃 pCnt 𝐴) ∈ ℝ*)
61, 2, 5syl2anc 691 . . . . 5 (𝜑 → (𝑃 pCnt 𝐴) ∈ ℝ*)
7 pcxcl 15403 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐵 ∈ ℚ) → (𝑃 pCnt 𝐵) ∈ ℝ*)
81, 3, 7syl2anc 691 . . . . 5 (𝜑 → (𝑃 pCnt 𝐵) ∈ ℝ*)
9 xrltle 11858 . . . . 5 (((𝑃 pCnt 𝐴) ∈ ℝ* ∧ (𝑃 pCnt 𝐵) ∈ ℝ*) → ((𝑃 pCnt 𝐴) < (𝑃 pCnt 𝐵) → (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵)))
106, 8, 9syl2anc 691 . . . 4 (𝜑 → ((𝑃 pCnt 𝐴) < (𝑃 pCnt 𝐵) → (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵)))
114, 10mpd 15 . . 3 (𝜑 → (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵))
121, 2, 3, 11pcadd 15431 . 2 (𝜑 → (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt (𝐴 + 𝐵)))
13 qaddcl 11680 . . . . 5 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐴 + 𝐵) ∈ ℚ)
142, 3, 13syl2anc 691 . . . 4 (𝜑 → (𝐴 + 𝐵) ∈ ℚ)
15 qnegcl 11681 . . . . 5 (𝐵 ∈ ℚ → -𝐵 ∈ ℚ)
163, 15syl 17 . . . 4 (𝜑 → -𝐵 ∈ ℚ)
17 xrltnle 9984 . . . . . . . . . 10 (((𝑃 pCnt 𝐴) ∈ ℝ* ∧ (𝑃 pCnt 𝐵) ∈ ℝ*) → ((𝑃 pCnt 𝐴) < (𝑃 pCnt 𝐵) ↔ ¬ (𝑃 pCnt 𝐵) ≤ (𝑃 pCnt 𝐴)))
186, 8, 17syl2anc 691 . . . . . . . . 9 (𝜑 → ((𝑃 pCnt 𝐴) < (𝑃 pCnt 𝐵) ↔ ¬ (𝑃 pCnt 𝐵) ≤ (𝑃 pCnt 𝐴)))
194, 18mpbid 221 . . . . . . . 8 (𝜑 → ¬ (𝑃 pCnt 𝐵) ≤ (𝑃 pCnt 𝐴))
201adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑃 pCnt 𝐵) ≤ (𝑃 pCnt (𝐴 + 𝐵))) → 𝑃 ∈ ℙ)
2116adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑃 pCnt 𝐵) ≤ (𝑃 pCnt (𝐴 + 𝐵))) → -𝐵 ∈ ℚ)
2214adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑃 pCnt 𝐵) ≤ (𝑃 pCnt (𝐴 + 𝐵))) → (𝐴 + 𝐵) ∈ ℚ)
23 pcneg 15416 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℙ ∧ 𝐵 ∈ ℚ) → (𝑃 pCnt -𝐵) = (𝑃 pCnt 𝐵))
241, 3, 23syl2anc 691 . . . . . . . . . . . . 13 (𝜑 → (𝑃 pCnt -𝐵) = (𝑃 pCnt 𝐵))
2524breq1d 4593 . . . . . . . . . . . 12 (𝜑 → ((𝑃 pCnt -𝐵) ≤ (𝑃 pCnt (𝐴 + 𝐵)) ↔ (𝑃 pCnt 𝐵) ≤ (𝑃 pCnt (𝐴 + 𝐵))))
2625biimpar 501 . . . . . . . . . . 11 ((𝜑 ∧ (𝑃 pCnt 𝐵) ≤ (𝑃 pCnt (𝐴 + 𝐵))) → (𝑃 pCnt -𝐵) ≤ (𝑃 pCnt (𝐴 + 𝐵)))
2720, 21, 22, 26pcadd 15431 . . . . . . . . . 10 ((𝜑 ∧ (𝑃 pCnt 𝐵) ≤ (𝑃 pCnt (𝐴 + 𝐵))) → (𝑃 pCnt -𝐵) ≤ (𝑃 pCnt (-𝐵 + (𝐴 + 𝐵))))
2827ex 449 . . . . . . . . 9 (𝜑 → ((𝑃 pCnt 𝐵) ≤ (𝑃 pCnt (𝐴 + 𝐵)) → (𝑃 pCnt -𝐵) ≤ (𝑃 pCnt (-𝐵 + (𝐴 + 𝐵)))))
29 qcn 11678 . . . . . . . . . . . . . . 15 (𝐵 ∈ ℚ → 𝐵 ∈ ℂ)
303, 29syl 17 . . . . . . . . . . . . . 14 (𝜑𝐵 ∈ ℂ)
3130negcld 10258 . . . . . . . . . . . . 13 (𝜑 → -𝐵 ∈ ℂ)
32 qcn 11678 . . . . . . . . . . . . . 14 (𝐴 ∈ ℚ → 𝐴 ∈ ℂ)
332, 32syl 17 . . . . . . . . . . . . 13 (𝜑𝐴 ∈ ℂ)
3431, 33, 30add12d 10141 . . . . . . . . . . . 12 (𝜑 → (-𝐵 + (𝐴 + 𝐵)) = (𝐴 + (-𝐵 + 𝐵)))
3531, 30addcomd 10117 . . . . . . . . . . . . . 14 (𝜑 → (-𝐵 + 𝐵) = (𝐵 + -𝐵))
3630negidd 10261 . . . . . . . . . . . . . 14 (𝜑 → (𝐵 + -𝐵) = 0)
3735, 36eqtrd 2644 . . . . . . . . . . . . 13 (𝜑 → (-𝐵 + 𝐵) = 0)
3837oveq2d 6565 . . . . . . . . . . . 12 (𝜑 → (𝐴 + (-𝐵 + 𝐵)) = (𝐴 + 0))
3933addid1d 10115 . . . . . . . . . . . 12 (𝜑 → (𝐴 + 0) = 𝐴)
4034, 38, 393eqtrd 2648 . . . . . . . . . . 11 (𝜑 → (-𝐵 + (𝐴 + 𝐵)) = 𝐴)
4140oveq2d 6565 . . . . . . . . . 10 (𝜑 → (𝑃 pCnt (-𝐵 + (𝐴 + 𝐵))) = (𝑃 pCnt 𝐴))
4224, 41breq12d 4596 . . . . . . . . 9 (𝜑 → ((𝑃 pCnt -𝐵) ≤ (𝑃 pCnt (-𝐵 + (𝐴 + 𝐵))) ↔ (𝑃 pCnt 𝐵) ≤ (𝑃 pCnt 𝐴)))
4328, 42sylibd 228 . . . . . . . 8 (𝜑 → ((𝑃 pCnt 𝐵) ≤ (𝑃 pCnt (𝐴 + 𝐵)) → (𝑃 pCnt 𝐵) ≤ (𝑃 pCnt 𝐴)))
4419, 43mtod 188 . . . . . . 7 (𝜑 → ¬ (𝑃 pCnt 𝐵) ≤ (𝑃 pCnt (𝐴 + 𝐵)))
45 pcxcl 15403 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ (𝐴 + 𝐵) ∈ ℚ) → (𝑃 pCnt (𝐴 + 𝐵)) ∈ ℝ*)
461, 14, 45syl2anc 691 . . . . . . . 8 (𝜑 → (𝑃 pCnt (𝐴 + 𝐵)) ∈ ℝ*)
47 xrltnle 9984 . . . . . . . 8 (((𝑃 pCnt (𝐴 + 𝐵)) ∈ ℝ* ∧ (𝑃 pCnt 𝐵) ∈ ℝ*) → ((𝑃 pCnt (𝐴 + 𝐵)) < (𝑃 pCnt 𝐵) ↔ ¬ (𝑃 pCnt 𝐵) ≤ (𝑃 pCnt (𝐴 + 𝐵))))
4846, 8, 47syl2anc 691 . . . . . . 7 (𝜑 → ((𝑃 pCnt (𝐴 + 𝐵)) < (𝑃 pCnt 𝐵) ↔ ¬ (𝑃 pCnt 𝐵) ≤ (𝑃 pCnt (𝐴 + 𝐵))))
4944, 48mpbird 246 . . . . . 6 (𝜑 → (𝑃 pCnt (𝐴 + 𝐵)) < (𝑃 pCnt 𝐵))
50 xrltle 11858 . . . . . . 7 (((𝑃 pCnt (𝐴 + 𝐵)) ∈ ℝ* ∧ (𝑃 pCnt 𝐵) ∈ ℝ*) → ((𝑃 pCnt (𝐴 + 𝐵)) < (𝑃 pCnt 𝐵) → (𝑃 pCnt (𝐴 + 𝐵)) ≤ (𝑃 pCnt 𝐵)))
5146, 8, 50syl2anc 691 . . . . . 6 (𝜑 → ((𝑃 pCnt (𝐴 + 𝐵)) < (𝑃 pCnt 𝐵) → (𝑃 pCnt (𝐴 + 𝐵)) ≤ (𝑃 pCnt 𝐵)))
5249, 51mpd 15 . . . . 5 (𝜑 → (𝑃 pCnt (𝐴 + 𝐵)) ≤ (𝑃 pCnt 𝐵))
5352, 24breqtrrd 4611 . . . 4 (𝜑 → (𝑃 pCnt (𝐴 + 𝐵)) ≤ (𝑃 pCnt -𝐵))
541, 14, 16, 53pcadd 15431 . . 3 (𝜑 → (𝑃 pCnt (𝐴 + 𝐵)) ≤ (𝑃 pCnt ((𝐴 + 𝐵) + -𝐵)))
5533, 30, 31addassd 9941 . . . . 5 (𝜑 → ((𝐴 + 𝐵) + -𝐵) = (𝐴 + (𝐵 + -𝐵)))
5636oveq2d 6565 . . . . 5 (𝜑 → (𝐴 + (𝐵 + -𝐵)) = (𝐴 + 0))
5755, 56, 393eqtrd 2648 . . . 4 (𝜑 → ((𝐴 + 𝐵) + -𝐵) = 𝐴)
5857oveq2d 6565 . . 3 (𝜑 → (𝑃 pCnt ((𝐴 + 𝐵) + -𝐵)) = (𝑃 pCnt 𝐴))
5954, 58breqtrd 4609 . 2 (𝜑 → (𝑃 pCnt (𝐴 + 𝐵)) ≤ (𝑃 pCnt 𝐴))
60 xrletri3 11861 . . 3 (((𝑃 pCnt 𝐴) ∈ ℝ* ∧ (𝑃 pCnt (𝐴 + 𝐵)) ∈ ℝ*) → ((𝑃 pCnt 𝐴) = (𝑃 pCnt (𝐴 + 𝐵)) ↔ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt (𝐴 + 𝐵)) ∧ (𝑃 pCnt (𝐴 + 𝐵)) ≤ (𝑃 pCnt 𝐴))))
616, 46, 60syl2anc 691 . 2 (𝜑 → ((𝑃 pCnt 𝐴) = (𝑃 pCnt (𝐴 + 𝐵)) ↔ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt (𝐴 + 𝐵)) ∧ (𝑃 pCnt (𝐴 + 𝐵)) ≤ (𝑃 pCnt 𝐴))))
6212, 59, 61mpbir2and 959 1 (𝜑 → (𝑃 pCnt 𝐴) = (𝑃 pCnt (𝐴 + 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977   class class class wbr 4583  (class class class)co 6549  cc 9813  0cc0 9815   + caddc 9818  *cxr 9952   < clt 9953  cle 9954  -cneg 10146  cq 11664  cprime 15223   pCnt cpc 15379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-dvds 14822  df-gcd 15055  df-prm 15224  df-pc 15380
This theorem is referenced by:  sylow1lem1  17836
  Copyright terms: Public domain W3C validator