Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  elq Structured version   Visualization version   GIF version

Theorem elq 11666
 Description: Membership in the set of rationals. (Contributed by NM, 8-Jan-2002.) (Revised by Mario Carneiro, 28-Jan-2014.)
Assertion
Ref Expression
elq (𝐴 ∈ ℚ ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦))
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem elq
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-q 11665 . . 3 ℚ = ( / “ (ℤ × ℕ))
21eleq2i 2680 . 2 (𝐴 ∈ ℚ ↔ 𝐴 ∈ ( / “ (ℤ × ℕ)))
3 df-div 10564 . . . 4 / = (𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥))
4 riotaex 6515 . . . 4 (𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥) ∈ V
53, 4fnmpt2i 7128 . . 3 / Fn (ℂ × (ℂ ∖ {0}))
6 zsscn 11262 . . . 4 ℤ ⊆ ℂ
7 nncn 10905 . . . . . 6 (𝑥 ∈ ℕ → 𝑥 ∈ ℂ)
8 nnne0 10930 . . . . . 6 (𝑥 ∈ ℕ → 𝑥 ≠ 0)
9 eldifsn 4260 . . . . . 6 (𝑥 ∈ (ℂ ∖ {0}) ↔ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
107, 8, 9sylanbrc 695 . . . . 5 (𝑥 ∈ ℕ → 𝑥 ∈ (ℂ ∖ {0}))
1110ssriv 3572 . . . 4 ℕ ⊆ (ℂ ∖ {0})
12 xpss12 5148 . . . 4 ((ℤ ⊆ ℂ ∧ ℕ ⊆ (ℂ ∖ {0})) → (ℤ × ℕ) ⊆ (ℂ × (ℂ ∖ {0})))
136, 11, 12mp2an 704 . . 3 (ℤ × ℕ) ⊆ (ℂ × (ℂ ∖ {0}))
14 ovelimab 6710 . . 3 (( / Fn (ℂ × (ℂ ∖ {0})) ∧ (ℤ × ℕ) ⊆ (ℂ × (ℂ ∖ {0}))) → (𝐴 ∈ ( / “ (ℤ × ℕ)) ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦)))
155, 13, 14mp2an 704 . 2 (𝐴 ∈ ( / “ (ℤ × ℕ)) ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦))
162, 15bitri 263 1 (𝐴 ∈ ℚ ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 195   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  ∃wrex 2897   ∖ cdif 3537   ⊆ wss 3540  {csn 4125   × cxp 5036   “ cima 5041   Fn wfn 5799  ℩crio 6510  (class class class)co 6549  ℂcc 9813  0cc0 9815   · cmul 9820   / cdiv 10563  ℕcn 10897  ℤcz 11254  ℚcq 11664 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-z 11255  df-q 11665 This theorem is referenced by:  qmulz  11667  znq  11668  qre  11669  zq  11670  qexALT  11679  qaddcl  11680  qnegcl  11681  qmulcl  11682  qreccl  11684  eirr  14772  qnnen  14781  sqrt2irr  14817  qredeu  15210  pceu  15389  pcqmul  15396  pcqcl  15399  pcneg  15416  pcz  15423  pcadd  15431  qsssubdrg  19624  ostthlem1  25116  ipasslem5  27074
 Copyright terms: Public domain W3C validator