Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  pserdvlem1 Structured version   Visualization version   GIF version

Theorem pserdvlem1 23985
 Description: Lemma for pserdv 23987. (Contributed by Mario Carneiro, 7-May-2015.)
Hypotheses
Ref Expression
pserf.g 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
pserf.f 𝐹 = (𝑦𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗))
pserf.a (𝜑𝐴:ℕ0⟶ℂ)
pserf.r 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
psercn.s 𝑆 = (abs “ (0[,)𝑅))
psercn.m 𝑀 = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1))
Assertion
Ref Expression
pserdvlem1 ((𝜑𝑎𝑆) → ((((abs‘𝑎) + 𝑀) / 2) ∈ ℝ+ ∧ (abs‘𝑎) < (((abs‘𝑎) + 𝑀) / 2) ∧ (((abs‘𝑎) + 𝑀) / 2) < 𝑅))
Distinct variable groups:   𝑗,𝑎,𝑛,𝑟,𝑥,𝑦,𝐴   𝑗,𝑀,𝑦   𝑗,𝐺,𝑟,𝑦   𝑆,𝑎,𝑗,𝑦   𝐹,𝑎   𝜑,𝑎,𝑗,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑛,𝑟)   𝑅(𝑥,𝑦,𝑗,𝑛,𝑟,𝑎)   𝑆(𝑥,𝑛,𝑟)   𝐹(𝑥,𝑦,𝑗,𝑛,𝑟)   𝐺(𝑥,𝑛,𝑎)   𝑀(𝑥,𝑛,𝑟,𝑎)

Proof of Theorem pserdvlem1
StepHypRef Expression
1 psercn.s . . . . . . . . 9 𝑆 = (abs “ (0[,)𝑅))
2 cnvimass 5404 . . . . . . . . . 10 (abs “ (0[,)𝑅)) ⊆ dom abs
3 absf 13925 . . . . . . . . . . 11 abs:ℂ⟶ℝ
43fdmi 5965 . . . . . . . . . 10 dom abs = ℂ
52, 4sseqtri 3600 . . . . . . . . 9 (abs “ (0[,)𝑅)) ⊆ ℂ
61, 5eqsstri 3598 . . . . . . . 8 𝑆 ⊆ ℂ
76a1i 11 . . . . . . 7 (𝜑𝑆 ⊆ ℂ)
87sselda 3568 . . . . . 6 ((𝜑𝑎𝑆) → 𝑎 ∈ ℂ)
98abscld 14023 . . . . 5 ((𝜑𝑎𝑆) → (abs‘𝑎) ∈ ℝ)
10 pserf.g . . . . . . . 8 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
11 pserf.f . . . . . . . 8 𝐹 = (𝑦𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗))
12 pserf.a . . . . . . . 8 (𝜑𝐴:ℕ0⟶ℂ)
13 pserf.r . . . . . . . 8 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
14 psercn.m . . . . . . . 8 𝑀 = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1))
1510, 11, 12, 13, 1, 14psercnlem1 23983 . . . . . . 7 ((𝜑𝑎𝑆) → (𝑀 ∈ ℝ+ ∧ (abs‘𝑎) < 𝑀𝑀 < 𝑅))
1615simp1d 1066 . . . . . 6 ((𝜑𝑎𝑆) → 𝑀 ∈ ℝ+)
1716rpred 11748 . . . . 5 ((𝜑𝑎𝑆) → 𝑀 ∈ ℝ)
189, 17readdcld 9948 . . . 4 ((𝜑𝑎𝑆) → ((abs‘𝑎) + 𝑀) ∈ ℝ)
19 0red 9920 . . . . 5 ((𝜑𝑎𝑆) → 0 ∈ ℝ)
208absge0d 14031 . . . . 5 ((𝜑𝑎𝑆) → 0 ≤ (abs‘𝑎))
219, 16ltaddrpd 11781 . . . . 5 ((𝜑𝑎𝑆) → (abs‘𝑎) < ((abs‘𝑎) + 𝑀))
2219, 9, 18, 20, 21lelttrd 10074 . . . 4 ((𝜑𝑎𝑆) → 0 < ((abs‘𝑎) + 𝑀))
2318, 22elrpd 11745 . . 3 ((𝜑𝑎𝑆) → ((abs‘𝑎) + 𝑀) ∈ ℝ+)
2423rphalfcld 11760 . 2 ((𝜑𝑎𝑆) → (((abs‘𝑎) + 𝑀) / 2) ∈ ℝ+)
2515simp2d 1067 . . 3 ((𝜑𝑎𝑆) → (abs‘𝑎) < 𝑀)
26 avglt1 11147 . . . 4 (((abs‘𝑎) ∈ ℝ ∧ 𝑀 ∈ ℝ) → ((abs‘𝑎) < 𝑀 ↔ (abs‘𝑎) < (((abs‘𝑎) + 𝑀) / 2)))
279, 17, 26syl2anc 691 . . 3 ((𝜑𝑎𝑆) → ((abs‘𝑎) < 𝑀 ↔ (abs‘𝑎) < (((abs‘𝑎) + 𝑀) / 2)))
2825, 27mpbid 221 . 2 ((𝜑𝑎𝑆) → (abs‘𝑎) < (((abs‘𝑎) + 𝑀) / 2))
2918rehalfcld 11156 . . . 4 ((𝜑𝑎𝑆) → (((abs‘𝑎) + 𝑀) / 2) ∈ ℝ)
3029rexrd 9968 . . 3 ((𝜑𝑎𝑆) → (((abs‘𝑎) + 𝑀) / 2) ∈ ℝ*)
3117rexrd 9968 . . 3 ((𝜑𝑎𝑆) → 𝑀 ∈ ℝ*)
32 iccssxr 12127 . . . . 5 (0[,]+∞) ⊆ ℝ*
3310, 12, 13radcnvcl 23975 . . . . 5 (𝜑𝑅 ∈ (0[,]+∞))
3432, 33sseldi 3566 . . . 4 (𝜑𝑅 ∈ ℝ*)
3534adantr 480 . . 3 ((𝜑𝑎𝑆) → 𝑅 ∈ ℝ*)
36 avglt2 11148 . . . . 5 (((abs‘𝑎) ∈ ℝ ∧ 𝑀 ∈ ℝ) → ((abs‘𝑎) < 𝑀 ↔ (((abs‘𝑎) + 𝑀) / 2) < 𝑀))
379, 17, 36syl2anc 691 . . . 4 ((𝜑𝑎𝑆) → ((abs‘𝑎) < 𝑀 ↔ (((abs‘𝑎) + 𝑀) / 2) < 𝑀))
3825, 37mpbid 221 . . 3 ((𝜑𝑎𝑆) → (((abs‘𝑎) + 𝑀) / 2) < 𝑀)
3915simp3d 1068 . . 3 ((𝜑𝑎𝑆) → 𝑀 < 𝑅)
4030, 31, 35, 38, 39xrlttrd 11866 . 2 ((𝜑𝑎𝑆) → (((abs‘𝑎) + 𝑀) / 2) < 𝑅)
4124, 28, 403jca 1235 1 ((𝜑𝑎𝑆) → ((((abs‘𝑎) + 𝑀) / 2) ∈ ℝ+ ∧ (abs‘𝑎) < (((abs‘𝑎) + 𝑀) / 2) ∧ (((abs‘𝑎) + 𝑀) / 2) < 𝑅))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  {crab 2900   ⊆ wss 3540  ifcif 4036   class class class wbr 4583   ↦ cmpt 4643  ◡ccnv 5037  dom cdm 5038   “ cima 5041  ⟶wf 5800  ‘cfv 5804  (class class class)co 6549  supcsup 8229  ℂcc 9813  ℝcr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820  +∞cpnf 9950  ℝ*cxr 9952   < clt 9953   / cdiv 10563  2c2 10947  ℕ0cn0 11169  ℝ+crp 11708  [,)cico 12048  [,]cicc 12049  seqcseq 12663  ↑cexp 12722  abscabs 13822   ⇝ cli 14063  Σcsu 14264 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-ico 12052  df-icc 12053  df-fz 12198  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067 This theorem is referenced by:  pserdvlem2  23986  pserdv  23987
 Copyright terms: Public domain W3C validator