MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pserdvlem1 Structured version   Visualization version   GIF version

Theorem pserdvlem1 23985
Description: Lemma for pserdv 23987. (Contributed by Mario Carneiro, 7-May-2015.)
Hypotheses
Ref Expression
pserf.g 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
pserf.f 𝐹 = (𝑦𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗))
pserf.a (𝜑𝐴:ℕ0⟶ℂ)
pserf.r 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
psercn.s 𝑆 = (abs “ (0[,)𝑅))
psercn.m 𝑀 = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1))
Assertion
Ref Expression
pserdvlem1 ((𝜑𝑎𝑆) → ((((abs‘𝑎) + 𝑀) / 2) ∈ ℝ+ ∧ (abs‘𝑎) < (((abs‘𝑎) + 𝑀) / 2) ∧ (((abs‘𝑎) + 𝑀) / 2) < 𝑅))
Distinct variable groups:   𝑗,𝑎,𝑛,𝑟,𝑥,𝑦,𝐴   𝑗,𝑀,𝑦   𝑗,𝐺,𝑟,𝑦   𝑆,𝑎,𝑗,𝑦   𝐹,𝑎   𝜑,𝑎,𝑗,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑛,𝑟)   𝑅(𝑥,𝑦,𝑗,𝑛,𝑟,𝑎)   𝑆(𝑥,𝑛,𝑟)   𝐹(𝑥,𝑦,𝑗,𝑛,𝑟)   𝐺(𝑥,𝑛,𝑎)   𝑀(𝑥,𝑛,𝑟,𝑎)

Proof of Theorem pserdvlem1
StepHypRef Expression
1 psercn.s . . . . . . . . 9 𝑆 = (abs “ (0[,)𝑅))
2 cnvimass 5404 . . . . . . . . . 10 (abs “ (0[,)𝑅)) ⊆ dom abs
3 absf 13925 . . . . . . . . . . 11 abs:ℂ⟶ℝ
43fdmi 5965 . . . . . . . . . 10 dom abs = ℂ
52, 4sseqtri 3600 . . . . . . . . 9 (abs “ (0[,)𝑅)) ⊆ ℂ
61, 5eqsstri 3598 . . . . . . . 8 𝑆 ⊆ ℂ
76a1i 11 . . . . . . 7 (𝜑𝑆 ⊆ ℂ)
87sselda 3568 . . . . . 6 ((𝜑𝑎𝑆) → 𝑎 ∈ ℂ)
98abscld 14023 . . . . 5 ((𝜑𝑎𝑆) → (abs‘𝑎) ∈ ℝ)
10 pserf.g . . . . . . . 8 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
11 pserf.f . . . . . . . 8 𝐹 = (𝑦𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗))
12 pserf.a . . . . . . . 8 (𝜑𝐴:ℕ0⟶ℂ)
13 pserf.r . . . . . . . 8 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
14 psercn.m . . . . . . . 8 𝑀 = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1))
1510, 11, 12, 13, 1, 14psercnlem1 23983 . . . . . . 7 ((𝜑𝑎𝑆) → (𝑀 ∈ ℝ+ ∧ (abs‘𝑎) < 𝑀𝑀 < 𝑅))
1615simp1d 1066 . . . . . 6 ((𝜑𝑎𝑆) → 𝑀 ∈ ℝ+)
1716rpred 11748 . . . . 5 ((𝜑𝑎𝑆) → 𝑀 ∈ ℝ)
189, 17readdcld 9948 . . . 4 ((𝜑𝑎𝑆) → ((abs‘𝑎) + 𝑀) ∈ ℝ)
19 0red 9920 . . . . 5 ((𝜑𝑎𝑆) → 0 ∈ ℝ)
208absge0d 14031 . . . . 5 ((𝜑𝑎𝑆) → 0 ≤ (abs‘𝑎))
219, 16ltaddrpd 11781 . . . . 5 ((𝜑𝑎𝑆) → (abs‘𝑎) < ((abs‘𝑎) + 𝑀))
2219, 9, 18, 20, 21lelttrd 10074 . . . 4 ((𝜑𝑎𝑆) → 0 < ((abs‘𝑎) + 𝑀))
2318, 22elrpd 11745 . . 3 ((𝜑𝑎𝑆) → ((abs‘𝑎) + 𝑀) ∈ ℝ+)
2423rphalfcld 11760 . 2 ((𝜑𝑎𝑆) → (((abs‘𝑎) + 𝑀) / 2) ∈ ℝ+)
2515simp2d 1067 . . 3 ((𝜑𝑎𝑆) → (abs‘𝑎) < 𝑀)
26 avglt1 11147 . . . 4 (((abs‘𝑎) ∈ ℝ ∧ 𝑀 ∈ ℝ) → ((abs‘𝑎) < 𝑀 ↔ (abs‘𝑎) < (((abs‘𝑎) + 𝑀) / 2)))
279, 17, 26syl2anc 691 . . 3 ((𝜑𝑎𝑆) → ((abs‘𝑎) < 𝑀 ↔ (abs‘𝑎) < (((abs‘𝑎) + 𝑀) / 2)))
2825, 27mpbid 221 . 2 ((𝜑𝑎𝑆) → (abs‘𝑎) < (((abs‘𝑎) + 𝑀) / 2))
2918rehalfcld 11156 . . . 4 ((𝜑𝑎𝑆) → (((abs‘𝑎) + 𝑀) / 2) ∈ ℝ)
3029rexrd 9968 . . 3 ((𝜑𝑎𝑆) → (((abs‘𝑎) + 𝑀) / 2) ∈ ℝ*)
3117rexrd 9968 . . 3 ((𝜑𝑎𝑆) → 𝑀 ∈ ℝ*)
32 iccssxr 12127 . . . . 5 (0[,]+∞) ⊆ ℝ*
3310, 12, 13radcnvcl 23975 . . . . 5 (𝜑𝑅 ∈ (0[,]+∞))
3432, 33sseldi 3566 . . . 4 (𝜑𝑅 ∈ ℝ*)
3534adantr 480 . . 3 ((𝜑𝑎𝑆) → 𝑅 ∈ ℝ*)
36 avglt2 11148 . . . . 5 (((abs‘𝑎) ∈ ℝ ∧ 𝑀 ∈ ℝ) → ((abs‘𝑎) < 𝑀 ↔ (((abs‘𝑎) + 𝑀) / 2) < 𝑀))
379, 17, 36syl2anc 691 . . . 4 ((𝜑𝑎𝑆) → ((abs‘𝑎) < 𝑀 ↔ (((abs‘𝑎) + 𝑀) / 2) < 𝑀))
3825, 37mpbid 221 . . 3 ((𝜑𝑎𝑆) → (((abs‘𝑎) + 𝑀) / 2) < 𝑀)
3915simp3d 1068 . . 3 ((𝜑𝑎𝑆) → 𝑀 < 𝑅)
4030, 31, 35, 38, 39xrlttrd 11866 . 2 ((𝜑𝑎𝑆) → (((abs‘𝑎) + 𝑀) / 2) < 𝑅)
4124, 28, 403jca 1235 1 ((𝜑𝑎𝑆) → ((((abs‘𝑎) + 𝑀) / 2) ∈ ℝ+ ∧ (abs‘𝑎) < (((abs‘𝑎) + 𝑀) / 2) ∧ (((abs‘𝑎) + 𝑀) / 2) < 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  {crab 2900  wss 3540  ifcif 4036   class class class wbr 4583  cmpt 4643  ccnv 5037  dom cdm 5038  cima 5041  wf 5800  cfv 5804  (class class class)co 6549  supcsup 8229  cc 9813  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820  +∞cpnf 9950  *cxr 9952   < clt 9953   / cdiv 10563  2c2 10947  0cn0 11169  +crp 11708  [,)cico 12048  [,]cicc 12049  seqcseq 12663  cexp 12722  abscabs 13822  cli 14063  Σcsu 14264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-ico 12052  df-icc 12053  df-fz 12198  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067
This theorem is referenced by:  pserdvlem2  23986  pserdv  23987
  Copyright terms: Public domain W3C validator